DCTD Human Toxicology and Pharmacology

DCTD 人类毒理学和药理学

基本信息

  • 批准号:
    8241784
  • 负责人:
  • 金额:
    $ 375.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-26 至 2018-09-25
  • 项目状态:
    已结题

项目摘要

Laboratory of Human Toxicology and Pharmacology (LHTP) - The Laboratory of Human Toxicology and Pharmacology (LHTP) provides technical and operational support for DCTD programs designed to increase the pace and accuracy of drug development in oncology and facilitate the entry of new chemical entities (NCEs) for cancer treatment into Phase 0 and I clinical trials. LHTP is an integrated, multi-disciplinary laboratory program that builds on the foundation of pharmacodynamics (PD) and toxicodynamics (TD) to predict the desirable and undesirable human drug effects that will likely be encountered during the clinical evaluation of both traditional cytotoxic as well as newer molecular target based small molecules and engineered therapeutic viruses. LHTP expertise in predictive human toxicology using in vitro models, pharmacodynamic assay development and clinical implementation, and preclinical drug formulation combine to humanize treatment regimens, therapeutic assessment, and interpretation of non-clinical models of cancer. The laboratory integrates this novel expertise to ¿humanize¿ treatment and assessment of mouse models of human disease in order to validate pharmacodynamic assays for use as primary endpoints of Phase 0 trials, which are conducted under exploratory IND guidelines from the FDA to confirm that a NCE works in man as it has in the preclinical models. The integrated approach includes a route of administration, dosage form, dose level, and clinical sampling procedures (e.g., anesthesia, needle, or excisional biopsy) that are directly relevant to a Phase 0 clinical trial. The LHTP introduced the concept and practice of completely humanizing preclinical models of cancer therapy, which led to the use of clinical biopsy procedures in human xenograft and orthotopic tumor models to prove the clinical readiness of a PD assay. LHTP took the lead in ¿reverse translational¿ research, to learn the clinical procedures of tissue collection and then transfer them to DTP/BTB. Comparing humanized and traditional preclinical study designs in cancer models over several years will yield the results required to determine whether this approach improves the correlation between nonclinical models and the clinic. The LHTP is organized into four specialized, but interrelated, sections that align with the technical support needs of DCTD: Pharmacodynamic Assay Development and Implementation (PADIS), Predictive Toxicology (PTS), Viral Vector Toxicology (VVTS), and Formulation Development (FDS). The laboratory director manages the overall scientific program of the LHTP and its coordination with DCTD operations, including coordinated interactions and assay transfers from LHTP to the National Clinical Target Validation Laboratory (NCTVL) operating at the NIH campus. Pharmacodynamic Assay Development and Implementation Section (PADIS) - Modern developmental therapeutic efforts for cancer utilize an understanding of signal transduction or differentiation pathways to identify new drug candidates that exert defined actions on the functional status of these targets. Some of these defined molecular effects will have therapeutic potential, leading to apoptosis, differentiation, or other desirable changes in the function of cancer cells. By coordinated use of the preclinical efficacy models of the Biological Testing Branch of DTP, it is possible to define the relationship between the extent of drug effect in the tumor and the level of drug exposure associated with these effects. Clinical confirmation of these preclinical findings would provide strong rationale for a full clinical development program, and the FDA recently authorized a new type of early clinical trial to explore microdoses of investigational agents prior to full dose finding and safety trials. This exploratory IND mechanism (x-IND) is relevant for multiple therapeutic classes, and is being used by the DCTD to conduct such confirmatory studies of molecular drug action on tumor target in a small number of patients prior to full clinical development (termed ¿Phase 0 trials¿ at the NCI). Failure of a NCE to affect molecular target during the Phase 0 trial would provide a rationale to halt its development. The mission of PADIS is to provide expert technical support to this DCTD initiative by developing and validating laboratory assays that quantify a drug's effect on a molecular target in a tumor (and, if possible, in surrogate tissues as well), and can be readily implemented in the clinical setting. PADIS uses preclinical models to develop and validate pharmacodynamic (PD) assays and companion procedures for tissue acquisition that will be used in the clinical trial without change. A unique aspect of the PADIS approach is the constraints imposed on the development and validation of PD assays by the radiological, surgical, and anesthesia procedures and practices that will eventually be used clinically to obtain the tissue specimens for the PD assays. This is a technical area that has been underappreciated in the past, and PADIS works closely with BTB to integrate anticipated medical procedures into the preclinical models and develop clinically ready assays. When they can be established as accurate reporters of drug action in tumor, surrogate organ compartments (such as peripheral blood mononuclear cells or bone marrow or buccal keratinocytes) are useful for less invasive monitoring of drug effects than biopsies. As the final step in PD assay development and implementation, PADIS is responsible for cross-training the Bethesda-based NCTVL staff in the new assays and then coordinating with NCTVL to transfer the validated method to the clinical laboratory for deployment in the x-IND clinical trial. PADIS plays a key technical role in the developmental stages of clinical pharmacodynamic projects of the DCTD and its collaboration with the CCR in Phase 0 clinical trials. These stages can be summarized as: rapid development and validation of sensitive, SOP-driven methodologies to quantify the impact of drug treatment on molecular target(s) in tumors; identification of normal tissue that is a surrogate for tumor, if possible (PBMCs, skin, saliva, buccal mucosa, etc); development and validation of clinically-transferable, SOP-driven procedures for tissue collection and processing that will provide evaluable specimens in the clinical setting; and oversee the transfer of validated PD assays to the NCTVL for deployment in clinical trials, and if necessary, contribute to assays of clinical specimens. Predictive Toxicology Section (PTS) - The Predictive Toxicology Section (PTS) was established to facilitate the maturation and validation of assays that have been shown to predict human toxicity, and deploy them in concert with pharmacokinetic (PK)/ pharmacodynamic (PD) programs in the DTP to facilitate development of NCEs more efficiently and accurately for potential advancement to clinical trials. Preclinical toxicology studies on potential cancer chemotherapeutic agents are generally conducted in two species of animals with the goals of defining the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), schedule dependency of toxicity, reversibility of adverse effects, and a safe clinical starting dose (SD). These animal studies do not always permit detailed evaluations of molecular toxicity, especially in relation to the expected mechanism in man and the role of off-target effects in mediating toxicity. Furthermore, the in vivo data sometimes show discrepancies between species that create uncertainty about human safety and result in low starting doses in early clinical trials. The PTS is tasked with the development of in vitro tissue, cellular, and molecular assays that use normal target tissues of drug toxicity and clinically relevant endpoints (e.g., in vitro ¿transaminitis¿) to evaluate potential human safety, predict tolerated human doses, and allow direct comparison of human and animal drug tolerance prior to clinical trials. This information can be used to include predicted human tolerated dose levels into studies by PADIS to validate PD assays at predicted clinical dose levels, increasing confidence that a target response to the drug will be detected clinically. The recent validation of in vitro bone marrow assays for neutropenia using rodent, canine, and human CFU-GM myeloid stem cells demonstrated the value of in vitro assays for predicting in vivo toxicities in animals and man. The PTS seeks to extend the application of the validated testing principles to other dose-limiting organ system toxicities, including pulmonary, hepatic, and cardiac toxicities. In addition, PTS is tasked with assisting the Toxicology and Pharmacology Branch, DTP in its evaluation of newly developed in vitro toxicity tests under its grant program entitled ¿Innovative Toxicology Models for Drug Evaluation¿ and the importing of promising assays into PTS for validation. The in vitro models of normal tissue response to adverse drug effects are expected to provide a simpler system than the in vivo models used for the discovery of off-target drug effects that can be circumvented via analoging and toxicodynamic markers of organ toxicity, which become candidates for valid assay development by PADIS and used by medical laboratories to monitor for early stages of drug toxicity prior to the development of symptoms. Newly developed in vitro assays are validated and then transferred to the VVTS for specialized applications in the assessment of human safety of engineered viral therapeutics (see below). These novel safety assessment tools can be deployed in the pre-IND or IND-directed setting. Viral Vector Toxicology Section (VVTS) - The primary mission of the VVTS is to provide support for preclinical development of anticancer viral vectors. The research efforts are currently focused on the investigation of human toxicity potential of novel anticancer viral vectors by using humanized in vitro assay systems, and the evaluation of oncolytic activity and tumor selectivity of cancer-targeting viral vector agents. The VVTS explores the potential application of newly developed toxicity tests in PTS to the in vitro human safety assessment of engineered viral therapeutics. Additional areas of research include the assessment of the feasibility and efficacy of anticancer vector-combination therapy, consisting of viral vector agents and other cancer treatments of different modalities (e.g., chemotherapy or radiation); the elucidation of the molecular basis of tumor selection and oncolysis by candidate viral vectors; identification and establishment of tumor-specific biomarkers of viral agent-susceptible cancers, which can be adopted for future in vivo applications; and the development of optimal viral burden quantification assays to monitor the replication of viral vectors in targeted (tumor) and non-targeted (normal) tissue compartments in conjunction with in vivo safety and/or efficacy evaluations. During the reporting period, VVTS established a new in vitro assay system to evaluate the hepatotoxic potential of adenovirus-based anticancer vectors using primary human hepatocytes, characterized differential hepatotoxicity profiles of recombinant adenoviral vectors developed as therapeutic agents under the RAID program, and began collaboration with Biological Testing Branch (BTB), DTP, to evaluate the in vivo efficacy of oncolytic reovirus type 3 Dearing strain in a human melanoma xenograft model. Formulation Development Section Many NCEs that show promising anticancer characteristics exhibit very low aqueous solubility, which creates technical difficulties during in vitro and in vivo evaluations. The Formulation Development Section (FDS) is tasked with development of preclinical formulations of these NCEs suitable for intravenous injection and oral administration to mice and dogs and for testing in vitro in cell cultures. The FDS is developing a novel, moderate-throughput strategy comprised of an initial empirical screen, using 2¿5 mg of each NCE, to test for solubility in a dozen proven vehicles representing diverse solubilizing mechanisms, which have been used clinically. Suitability of these candidate pre-formulations for injection is proven by continued solubility when challenged with physiological fluids. It is expected that 10¿20% of poorly soluble NCEs will not be solubilized by conventional vehicles, and so the next step in the strategy is formulation testing of NCEs in novel pharmaceutical technology platforms, such as nanodispersions and emulsions, targeted nano-particles, and targeted carrier proteins. Although not all NCEs will have been formulatable by the end of the second step, this strategy is expected to achieve solubility and consistency requirements for in vitro studies of efficacy in the DTP screen and of in vitro human toxicity by PTS with a large majority of NCEs in the DTP pipeline. A large number of these formulated NCEs will also be suitable for intravenous and oral administration in animal models: BTB efficacy studies, BTB and TPB studies of PK and PD including validation of molecular PD assays by PADIS, and PTS assessment of toxicity via biomarkers (PTS) or clinical assessment. These preclinical formulations are intended to facilitate preclinical evaluation of developmental compounds, and are not necessarily the same as the formulated clinical product that may advance into clinical trials.
人类毒理学和药理学实验室 (LHTP) - 人类毒理学和药理学实验室 (LHTP) 为 DCTD 项目提供技术和运营支持,旨在提高肿瘤学药物开发的速度和准确性,并促进新化学实体 (NCE) 的进入) ) 将癌症治疗纳入 0 期和 I 期临床试验,LHTP 是一个综合的多学科实验室计划,建立在药效学 (PD) 和毒效动力学 (TD) 的基础上进行预测。在使用体外模型、药效测定开发和临床预测人类毒理学方面的传统细胞毒性以及基于新分子靶标的小分子和工程治疗病毒的临床评估过程中可能会遇到的理想和不良的人类药物效应。实施和临床前药物配方相结合,使治疗方案、治疗评估和癌症非临床模型的解释变得人性化。人性化??对人类疾病小鼠模型进行治疗和评估,以验证用作 0 期试验主要终点测定的药效学,这些试验是根据 FDA 的探索性 IND 指南进行的,以确认 NCE 在人体中的作用与临床前模型中一样综合方法包括与 0 期临床试验直接相关的给药途径、剂型、剂量水平和临床取样程序(例如麻醉、针刺或切除活检)。完全人性化的癌症治疗临床前模型的概念和实践,导致在人类异种移植和原位肿瘤模型中使用临床活检程序,以证明 LHTP 检测的临床准备情况处于领先地位。反向平移??研究,了解组织采集的临床程序,然后将其转移到 DTP/BTB 中,在癌症模型中比较人性化和传统的临床前研究设计,将产生确定该方法是否改善非临床模型与临床模型之间的相关性所需的结果。 LHTP 分为四个专门但相互关联的部分,以满足 DCTD 的技术支持需求:药效测定开发和实施 (PADIS)、预测毒理学 (PTS)、病毒载体毒理学 (VVTS) 和制剂开发 (FDS) 实验室主任负责管理 LHTP 的整体科学计划及其与 DCTD 运营的协调,包括协调相互作用以及从 LHTP 到国家临床目标验证实验室 (NCTVL) 的检测转移。在 NIH 校园运营。 药效测定开发和实施科 (PADIS) - 现代癌症发展治疗工作利用对信号转导或分化途径的理解来识别对这些靶标的功能状态发挥明确作用的新候选药物,其中一些明确的分子效应将具有治疗潜力,导致细胞凋亡、分化或。通过协调使用 DTP 生物测试部门的临床前功效模型,可以定义肿瘤中药物作用的程度与与肿瘤细胞相关的药物暴露水平之间的关系。这些效果的临床证实。临床前研究结果将为完整的临床开发计划提供强有力的理由,FDA 最近授权进行一种新型早期临床试验,在全剂量发现和安全性试验之前探索研究药物的微剂量。与多种治疗类别相关,并且 DCTD 正在使用它在全面临床开发之前对少数患者进行分子药物对肿瘤靶点作用的验证性研究(称为 ¿ 0 期试验¿在 0 期试验期间,NCE 未能影响分子靶点将成为停止其开发的理由。 PADIS 的使命是通过开发和验证量化实验室检测方法,为 DCTD 计划提供专家技术支持。 PADIS 使用临床前模型来开发和验证药效 (PD) 测定和药物对肿瘤中分子靶点(如果可能的话,也可以在替代组织中)的作用,并且可以在临床环境中轻松实施。 PADIS 方法的一个独特之处是放射学、手术和麻醉程序和实践对 PD 测定的开发和验证施加的限制。在临床上用于获取 PD 检测的组织样本,这是一个过去一直被低估的技术领域,PADIS 与 BTB 密切合作,以预期将医疗程序整合到临床前模型中,并在可以时开发出可供临床使用的检测方法。由于在肿瘤中准确产生药物作用,替代器官区室(例如外周血单核细胞或骨髓或颊角化细胞)可用于比活检更侵入性的药物作用监测作为PD测定开发和实施的最后一步, PADIS 负责对位于 Bethesda 的 NCTVL 工作人员进行新检测的交叉培训,然后与 NCTVL 协调,将经过验证的方法转移到临床实验室,以便在 x-IND 中部署PADIS 在 DCTD 临床药效学项目的开发阶段及其与 CCR 的 0 期临床试验合作中发挥着关键的技术作用。这些阶段可以概括为:快速开发和验证敏感的、SOP 驱动的方法。量化药物治疗对肿瘤分子靶标的影响;如果可能的话,识别作为肿瘤替代物的正常组织(PBMC、皮肤、唾液、颊粘膜等);临床可转移、SOP 驱动 组织采集和处理程序,将在临床环境中提供可评估的样本;并监督将经过验证的 PD 测定转移到 NCTVL 以在临床试验中部署,并在必要时有助于临床样本的测定。 预测毒理学部分 (PTS) - 建立预测毒理学部分 (PTS) 是为了促进已证明可预测人体毒性的测定方法的成熟和验证,并将其与药代动力学 (PK)/药效学 (PD) 程序结合起来部署DTP 旨在更有效、更准确地促进 NCE 的开发,以促进潜在的癌症化疗药物的临床前毒理学研究通常在两种动物中进行,目的是确定潜在的癌症化疗药物的临床前毒理学研究。最大耐受剂量(MTD)、剂量限制毒性(DLT)、毒性的时间表依赖性、不良反应的可逆性以及安全的临床起始剂量(SD)这些动物研究并不总是允许对分子毒性进行详细的评估,尤其是在分子毒性方面。此外,体内数据有时会显示物种之间的差异,这会造成人类安全性的不确定性,并导致早期临床试验中的起始剂量较低。承担开发任务使用药物毒性和临床相关终点的正常靶组织的体外组织、细胞和分子测定(例如,体外 ¿转氨炎?? )评估潜在的人类安全性,预测人类耐受剂量,并在临床试验之前直接比较人类和动物药物耐受性。该信息可用于将预测的人类耐受剂量水平纳入 PADIS 的研究中,以验证预测临床的 PD 测定。最近使用啮齿动物、犬和人类 CFU-GM 骨髓干细胞对中性粒细胞减少症的体外骨髓测定进行了验证,证明了体外测定的价值。为了PTS 致力于将经过验证的测试原理扩展到其他剂量限制性器官系统毒性,包括肺、肝和心脏毒性。 DTP 药理学分部根据其名为 ¿ 的资助计划对新开发的体外毒性测试进行评估用于药物评价的创新毒理学模型¿将有希望的检测方法导入 PTS 进行验证,预计正常组织对药物不良反应的体外模型将提供比用于发现可通过避免药物副作用的体内模型更简单的系统。器官毒性的模拟和毒动力学标记物,成为 PADIS 有效开发的候选者,以及医学实验室用于在症状出现之前监测药物毒性早期阶段的检测方法。新开发的体外检测方法经过验证,然后转移到 VVTS。用于评估工程病毒疗法的人类安全性的专门应用(见下文)。这些新颖的安全性评估工具可以部署在 IND 前或 IND 指导的环境中。 病毒载体毒理学部分(VVTS) - VVTS 的主要任务是为抗癌病毒载体的临床前开发提供支持,目前的研究工作重点是通过人源化体外试验研究新型抗癌病毒载体的人体毒性潜力。 VVTS 探索了 PTS 新开发的毒性测试在体外人体安全性评估中的潜在应用。其他研究领域包括评估抗癌载体组合疗法的可行性和功效,包括病毒载体制剂和其他不同方式的癌症治疗(例如化疗或放射);通过候选病毒载体进行肿瘤选择和溶瘤;鉴定和建立病毒剂敏感癌症的肿瘤特异性生物标志物,可用于未来的体内应用;以及开发最佳的病毒负荷定量测定法来监测;病毒载体在靶向(肿瘤)和非靶向(正常)组织区室中的复制以及体内安全性和/或功效评估在报告期内,VVTS建立了一种新的体外测定系统来评估病毒的肝毒性潜力。使用原代人肝细胞的基于腺病毒的抗癌载体,表征了根据 RAID 计划开发为治疗剂的重组腺病毒载体的差异肝毒性特征,并开始与生物测试部门合作(BTB)、DTP,评估溶瘤呼肠孤病毒 3 型 Dearing 株在人黑色素瘤异种移植模型中的体内功效。 制剂开发科 许多具有良好抗癌特性的 NCE 的水溶性极低,这给体外和体内评估带来了技术困难。制剂开发部门 (FDS) 的任务是开发这些 NCE 适合静脉注射和口服给药的临床前制剂。 FDS 正在开发一种新颖的中等通量策略,其中包括使用 2-5 毫克每种 NCE 进行初步经验筛选来测试。在代表不同溶解机制的十几种经过验证的载体中的溶解度已在临床上使用,这些候选预制剂在受到生理液体挑战时的持续溶解度已得到证明,预计 10% 至 20% 的难溶性 NCE 将溶解。不能被传统载体溶解,因此该策略的下一步是在新型制药技术平台(例如纳米分散体和乳液)中对 NCE 进行配方测试,目标是虽然在第二步结束时并非所有 NCE 都可以配制,但该策略有望达到 DTP 筛选和体外人体功效体外研究的溶解度和一致性要求。 DTP 管道中大多数 NCE 的 PTS 毒性大量这些配制的 NCE 也适用于动物模型中的静脉内和口服给药:BTB 功效研究、PK 和 PD 的 BTB 和 TPB 研究,包括验证。 PADIS 进行分子 PD 测定,以及通过生物标志物 (PTS) 进行毒性评估或临床评估。这些临床前制剂旨在促进开发化合物的临床前评估,不一定与可能进入临床的制剂临床产品相同。试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID HEIMBROOK其他文献

DAVID HEIMBROOK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID HEIMBROOK', 18)}}的其他基金

Therapeutically Applicable Research to Generate Effective Treatments (TARGET)
产生有效治疗方法的治疗应用研究(目标)
  • 批准号:
    8654778
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:
DCTD Drug Development Project Management
DCTD 药物开发项目管理
  • 批准号:
    8654757
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:
Genotyping for epidemiology studies
流行病学研究的基因分型
  • 批准号:
    8654773
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:
Image Analysis Laboratory - EML and OM combined
图像分析实验室 - EML 和 OM 结合
  • 批准号:
    8429264
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:
BCR Support for the NCI TCGA Program
BCR 对 NCI TCGA 计划的支持
  • 批准号:
    8757478
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:
Molecular Characterization of HIV-Associated Tumors by Sequencing
通过测序对 HIV 相关肿瘤进行分子表征
  • 批准号:
    8654788
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:
Latin American Breast Cancer Pilot
拉丁美洲乳腺癌试点
  • 批准号:
    8654819
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:
OCG Web Transition and Development
OCG Web 过渡和开发
  • 批准号:
    8654840
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:
DCTD Computer Support
DCTD 计算机支持
  • 批准号:
    8654747
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:
DCTD Cancer Diagnosis
DCTD癌症诊断
  • 批准号:
    8654755
  • 财政年份:
    2008
  • 资助金额:
    $ 375.55万
  • 项目类别:

相似国自然基金

基于sIgA的V(D)J结构多样性探索腺病毒载体鼻喷新冠奥密克戎疫苗诱导的呼吸道粘膜免疫原性特征
  • 批准号:
    82302607
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型腺病毒载体疫苗长效免疫机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
腺病毒载体新冠疫苗与灭活新冠疫苗诱导的免疫应答特征及序贯免疫策略研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于肠道腺病毒载体平台COVID-19粘膜疫苗的设计与筛选
  • 批准号:
    82161138001
  • 批准年份:
    2021
  • 资助金额:
    150 万元
  • 项目类别:
    国际(地区)合作与交流项目
纳米蛋白冠突破腺病毒载体疫苗预存免疫效应研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Inducible HMGB1 antagonist for viral-induced acute lung injury.
诱导型 HMGB1 拮抗剂,用于治疗病毒引起的急性肺损伤。
  • 批准号:
    10591804
  • 财政年份:
    2023
  • 资助金额:
    $ 375.55万
  • 项目类别:
NK cell memory subsets and their impact on HIV disease progression and vaccination
NK 细胞记忆亚群及其对 HIV 疾病进展和疫苗接种的影响
  • 批准号:
    10673142
  • 财政年份:
    2022
  • 资助金额:
    $ 375.55万
  • 项目类别:
Mechanisms of long-term maintenance of lung tissue-resident memory CD8 T cells
肺组织驻留记忆CD8 T细胞长期维持的机制
  • 批准号:
    10531128
  • 财政年份:
    2021
  • 资助金额:
    $ 375.55万
  • 项目类别:
Novel delivery platform and antigen design for an effective COVID-19 vaccine
用于有效的 COVID-19 疫苗的新型递送平台和抗原设计
  • 批准号:
    10175713
  • 财政年份:
    2020
  • 资助金额:
    $ 375.55万
  • 项目类别:
Novel delivery platform and antigen design for an effective COVID-19 vaccine
用于有效的 COVID-19 疫苗的新型递送平台和抗原设计
  • 批准号:
    10669131
  • 财政年份:
    2020
  • 资助金额:
    $ 375.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了