Oncogenic mechanisms and molecular targets in myeloma

骨髓瘤的致癌机制和分子靶点

基本信息

  • 批准号:
    8349279
  • 负责人:
  • 金额:
    $ 97.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The NF-kB pathway has become a particular focus of the Staudt laboratory due to its recurrent involvement in various lymphoid cancers. The laboratory demonstrated that multiple myeloma has frequent engagement of the NF-kB pathway due to diverse genetic abnormalities in regulators of the pathway, including amplification or translocation of NIK, deletion or somatic mutation of TRAF3, deletion of the locus encoding c-IAP1 and c-IAP2 deletion, deletion of the CYLD, and overexpression of CD40, NFkB1. The laboratory demonstrated that NIK overexpression and TRAF3 inactivation were responsible for constitutive activation of the classical NF-kB pathway in the multiple myeloma. Inhibition of IkappaB kinase beta, the critical kinase in the classical NF-kB pathway, was lethal to many myeloma cell lines. The laboratory developed a gene expression signature of NF-kB pathway activation in multiple myeloma and showed that the majority of primary myeloma cases have NF-kB activation in the malignant cells and proposed that this pathway is a promising new target for therapy of myeloma. To identify further therapeutic targets in multiple myeloma, the laboratory conducted an RNA interference-based genetic screen for genes required for the proliferation and survival of myeloma cells. This loss-of-function screen utilized a library of retroviral vectors expressing small hairpin RNAs (shRNAs), which mediate RNA interference. shRNAs targeting IRF4 were toxic for multiple myeloma cell lines but not to lymphoma cell lines. IRF4 is a lymphoid-restricted transcription factor that is required for B cell activation and for differentiation of mature B cells into plasma cells. IRF4 inactivation was toxic to 10 different myeloma cell lines representing most of the recurrent genetic subtypes of myeloma. Notably, IRF4 is not genetically abnormal in most myeloma cases. Therefore, the dependence of myeloma cells on IRF4 is an prime example of non-oncogene addiction, a phenomenon wherein cancer cells become dependent upon normal cellular proteins for their survival. To understand the molecular basis for this non-oncogene addiction, the Staudt laboratory combined gene expression profiling and genome-wide chromatin immunoprecipitation to determine the target genes activated by IRF4. Among the 35 genes that were directly activated by IRF4 were genes that encode regulators of the cell cycle, metabolism and energy, general transcription, cell death, and plasma cell function. Some of these targets are highly expressed in normal activated B cells while other are instead expressed highly in normal plasma cells. This indicates that myelomas are addicted to an aberrant genetic network regulated by IRF4. Of special interest was the proto-oncogene MYC, which is frequently overexpresed in multiple myeloma due to chromosomal translocation or amplification. The Staudt laboratory demonstrated that IRF4 directly transactivates MYC and MYC in turn transactives IRF4, thereby forming a positive autoregulatory loop. Consistent with this concept, myelomas have higher expression of both MYC and IRF4 than normal plasma cells. IRF4 emerges from these experiments as an attractive new therapeutic target with potential in all forms of multiple myeloma, regardless of underlying genetic abnormality. Since IRF4 deficient mice have discrete defects in B cell activation and plasma cell generation, therapeutic targeting of IRF4 would be predicted to have defined and manageable on-target side effects. Modulating aberrant transcription of oncogenes is a relatively unexplored opportunity in cancer therapeutics. In 10% of multiple myelomas, the initiating oncogenic event is translocation of MAF, a transcriptional activator of key target genes such as cyclinD2. Our prior work showed that MAF is upregulated in an additional 30% of MM cases, albeit by an unknown mechanism. We recently discovered a common mechanism inducing MAF transcription in both instances. The second mode of MAF transcription occurred in myelomas with MMSET translocation, and these cases overexpressed MAF target genes. MMSET knockdown decreased MAF transcription and cell viability. A small molecule screen found an inhibitor of MEK, which activates ERK-MAP kinases, reduced MAF mRNA in cells representing MMSET or MAF subgroups. ERK activates transcription of FOS, one subunit of the AP-1 transcription factor. By chromatin immunoprecipitation, FOS bound the MAF promoter, and MEK inhibition decreased this interaction. MEK inhibition selectively induced apoptosis in MAF-expressing myelomas, and FOS inactivation was similarly toxic. Re-expression of MAF rescued cells from death induced by MMSET depletion, MEK inhibition, or FOS inactivation. The data presented herein demonstrate that the MEK-ERK pathway regulates MAF transcription, providing molecular rationale for clinical evaluation of MEK inhibitors in MAF-expressing myeloma. This clinical trial has been initiated in collaboration with Drs. Ola Landgren and Tina Annunizata of the CCR.
NF-KB途径已成为Staudt实验室的特殊重点,因为它经常参与各种淋巴癌。该实验室表明,由于该途径调节器中多种遗传异常,多发性骨髓瘤经常参与NF-KB途径,包括NIK的扩增或易位TRAF3的扩增或易位,c-iap1和c-iap2 deletion of cyf cyf cyf cyf cyf cyf cyf cyfrest和cyflk的deletion traf3的扩增或易位。该实验室表明,NIK过表达和TRAF3失活是导致多发性骨髓瘤中经典NF-KB途径的组成型激活。 Ikappab激酶β的抑制作用是经典NF-KB途径中的临界激酶,对许多骨髓瘤细胞系致命。实验室在多发性骨髓瘤中开发了NF-KB途径激活的基因表达特征,并表明大多数原发性骨髓瘤病例在恶性细胞中具有NF-KB激活,并提出该途径是骨髓瘤治疗的有希望的新靶标。为了鉴定多发性骨髓瘤的进一步治疗靶标,实验室对基于RNA干扰的遗传筛选了骨髓瘤细胞的增殖和存活所需的基因。 这种功能丧失的屏幕利用了表达小发夹RNA(SHRNA)的逆转录病毒载体库,该库介导RNA干扰。靶向IRF4的SHRNA对多发性骨髓瘤细胞系有毒,但对淋巴瘤细胞系有毒。 IRF4是B细胞激活和成熟B细胞分化为浆细胞所必需的淋巴限制转录因子。 IRF4失活对10种不同的骨髓瘤细胞系有毒,代表大多数骨髓瘤的复发亚型。值得注意的是,在大多数骨髓瘤病例中,IRF4在遗传上并不异常。因此,骨髓瘤细胞对IRF4的依赖性是非癌基因成瘾的一个主要例子,这是一种现象,其中癌细胞依赖于正常细胞蛋白的生存。为了了解这种非癌基因成瘾的分子基础,Staudt实验室结合了基因表达分析和全基因组染色质免疫沉淀,以确定由IRF4激活的靶基因。在由IRF4直接激活的35个基因中,是编码细胞周期调节因子的基因,代谢和能量,一般转录,细胞死亡和浆细胞功能。其中一些靶标在正常活化的B细胞中高度表达,而其他靶标则在正常的浆细胞中表达高度表达。这表明骨髓瘤沉迷于由IRF4调节的异常遗传网络。特别感兴趣的是原癌基因MYC,由于染色体易位或扩增,它经常在多发性骨髓瘤中过度表现。 Staudt实验室表明,IRF4直接反复激活MYC和MYC反过来transactives IRF4,从而形成了阳性的自动调节环。与此概念一致,MYC和IRF4的表达比正常的浆细胞更高。 IRF4从这些实验中出现是一个有吸引力的新治疗靶标,无论是潜在的多发性骨髓瘤,无论基本的遗传异常如何。由于IRF4缺乏小鼠在B细胞激活和浆细胞产生中具有离散的缺陷,因此将预测IRF4的治疗靶向定义且易于管理的靶向副作用。调节癌基因的异常转录是癌症治疗中相对未开发的机会。在10%的多发性骨髓瘤中,启动致癌事件是MAF的易位,MAF是关键靶基因(例如Cyclind2)的转录激活因子。我们先前的工作表明,MAF在另外30%的MM病例中被上调,尽管是未知机制。最近,我们发现了在这两种情况下诱导MAF转录的常见机制。 MAF转录的第二种模式发生在带有MMSET易位的骨髓瘤中,这些情况过表达MAF靶基因。 MMSET敲低降低了MAF转录和细胞活力。一个小分子筛选发现了MEK的抑制剂,该抑制剂激活ERK-MAP激酶,减少了代表MMSET或MAF亚组的细胞中的MAF mRNA。 ERK激活FOS的转录,AP-1转录因子的一个亚基。通过染色质免疫沉淀,FOS结合MAF启动子,MEK抑制减少了这种相互作用。 MEK抑制在表达MAF的骨髓瘤中有选择性诱导的凋亡,而FOS失活同样有毒。 MAF的重新表达使细胞从MMSET耗竭,MEK抑制或FOS失活引起的死亡中。本文提供的数据表明,MEK-ERK途径调节MAF转录,为表达MAF表达骨髓瘤的MEK抑制剂的临床评估提供了分子原理。该临床试验已与DRS合作启动。 CCR的Ola Landgren和Tina Annunizata。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Louis Staudt其他文献

Louis Staudt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Louis Staudt', 18)}}的其他基金

Oncogenic mechanisms and molecular targets in myeloma
骨髓瘤的致癌机制和分子靶点
  • 批准号:
    10014505
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:
Molecular diagnosis and outcome prediction in lymphoma
淋巴瘤的分子诊断和结果预测
  • 批准号:
    10014502
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:
RNA interference-based screens for molecular targets in cancer
基于 RNA 干扰的癌症分子靶点筛选
  • 批准号:
    7965938
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:
Molecular diagnosis and outcome prediction in lymphoma
淋巴瘤的分子诊断和结果预测
  • 批准号:
    7733410
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:
Molecular diagnosis and outcome prediction in lymphoma
淋巴瘤的分子诊断和结果预测
  • 批准号:
    8157575
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:
Oncogenic mechanisms and molecular targets in lymphoma
淋巴瘤的致癌机制和分子靶点
  • 批准号:
    10702453
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:
Clinical development of mechanism-based lymphoma therapies
基于机制的淋巴瘤治疗的临床进展
  • 批准号:
    10702669
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:
Oncogenic mechanisms and molecular targets in myeloma
骨髓瘤的致癌机制和分子靶点
  • 批准号:
    7733413
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:
Molecular diagnosis and outcome prediction in lymphoma
淋巴瘤的分子诊断和结果预测
  • 批准号:
    10926109
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:
RNA interference-based screens for molecular targets in cancer
基于 RNA 干扰的癌症分子靶点筛选
  • 批准号:
    8157576
  • 财政年份:
  • 资助金额:
    $ 97.12万
  • 项目类别:

相似国自然基金

VNN1通过内质网非折叠蛋白应激介导单核巨噬细胞凋亡影响创伤患者脓毒症发生的机制研究
  • 批准号:
    82372549
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
草鱼贮藏过程肌细胞凋亡对鱼肉品质的影响机制研究
  • 批准号:
    32372397
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
MLCK1介导细胞凋亡和自噬影响炎症性肠病进展
  • 批准号:
    82370568
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
EHMT1通过CBX4/MLKL轴调控心肌细胞坏死性凋亡影响心肌缺血再灌注损伤的机制研究
  • 批准号:
    82370288
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
应激颗粒自噬对低氧诱导猪卵泡颗粒细胞凋亡的影响及机制研究
  • 批准号:
    32302741
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Endocrine tissue molecular pathways dysregulated by immune checkpoint inhibitors causing ICI-triggered adverse events
免疫检查点抑制剂导致内分泌组织分子通路失调,导致 ICI 引发的不良事件
  • 批准号:
    10648465
  • 财政年份:
    2023
  • 资助金额:
    $ 97.12万
  • 项目类别:
The role of extracellular vesicle-associated MicroRNAs in HIV-associated atherosclerosis
细胞外囊泡相关 MicroRNA 在 HIV 相关动脉粥样硬化中的作用
  • 批准号:
    10619831
  • 财政年份:
    2023
  • 资助金额:
    $ 97.12万
  • 项目类别:
Steroid Hormone Pathways Regulating BPH and LUTS
调节 BPH 和 LUTS 的类固醇激素途径
  • 批准号:
    10601867
  • 财政年份:
    2023
  • 资助金额:
    $ 97.12万
  • 项目类别:
Dermal-Epidermal Junction Disruptors: Toxicodynamic Mechanisms
真皮-表皮连接干扰物:毒效机制
  • 批准号:
    10629516
  • 财政年份:
    2023
  • 资助金额:
    $ 97.12万
  • 项目类别:
HER1-3 and Death Receptor protein folding as therapeutic vulnerabilities
HER1-3 和死亡受体蛋白折叠作为治疗漏洞
  • 批准号:
    10721930
  • 财政年份:
    2023
  • 资助金额:
    $ 97.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了