DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells

真核和原核细胞中的 DNA 复制、修复和诱变

基本信息

项目摘要

Scientists within the Laboratory of Genomic Integrity (LGI) study the mechanisms by which mutations are introduced into DNA. These studies span the evolutionary spectrum and include studies in bacteria, archaea and eukaryotes In humans, Activation-Induced Deaminase (AID) initiates diversity of immunoglobulin genes through deamination of Cytosine to Uracil. However, it has yet to be conclusively determined if the deamination event occurs in DNA, or RNA. Although most data support DNA deamination, there been is no physical evidence of Uracil residues in immunoglobulin genes. In a collaborative study with Patricia Gearhart (NIA/NIH), we demonstrated their presence by determining the sensitivity of DNA to digestion with Uracil DNA glycosylase (UNG) and abasic endonuclease. Using several different methods of detection, we identified Uracil residues in the variable and switch regions of human immunoglobulin genes. Uracil residues were generated within 24 h of B cell stimulation, were present on both DNA strands and were found to replace mainly Cytosine bases. Our data therefore provides the first direct evidence supporting the model that AID functions by deaminating Cytosine residues in DNA, rather than in RNA. DNA polymerases from Archaea are often thermostable and have been used for several decades in the polymerase chain reaction (PCR). PCR enables the detection, amplification and interrogation of DNA sequences from minute starting quantities, down to single DNA molecules. This has enabled a wealth of applications in medicine and biology ranging from clinical diagnostics, prognostics, and forensics, to molecular genetics including molecular archaeology and palaeobiology. However, the utility of PCR assays and the recovery of amplicons from such specimens can be greatly hindered, or even abrogated, by the presence of potent inhibitors. In a collaborative study with Phillip Holliger (MRC, Cambridge UK), we used molecular breeding and compartmentalized self-replication (CSR) of eight different Thermus DNA polymerase orthologs to engineer novel DNA polymerases with a broad resistance to complex environmental inhibitors. One such enzyme, called 2D9, was a chimeric polymerase comprising sequence elements derived from DNA polymerases from Thermus aquaticus, Thermus oshimai, Thermus thermophilus and Thermus brockianus. Remarkably, the 2D9 polymerase displayed a striking resistance to a broad spectrum of complex inhibitors of highly divergent composition including humic acid, bone dust, coprolite, peat extract, clay-rich soil, cave sediment and tar. We believe that 2D9 chimeric polymerase promises to have utility in PCR-based applications in a wide range of scientific fields including palaeobiology, archaeology, conservation biology, forensic and historic medicine.
基因组完整性实验室(LGI)中的科学家研究了将突变引入DNA的机制。 这些研究跨越了进化光谱,包括细菌,古细菌和真核生物的研究 在人类中,激活诱导的脱氨酶(AID)通过将胞嘧啶对尿嘧啶的脱氨酸启动免疫球蛋白基因的多样性。 但是,尚未确定脱氨酸事件是否发生在DNA或RNA中。尽管大多数数据支持DNA脱氨基,但没有物理证据表明免疫球蛋白基因中的尿嘧啶残基。 在与Patricia Gearhart(NIA/NIH)的一项合作研究中,我们通过确定DNA对使用尿嘧啶DNA糖基酶(UNG)和阿无核核酸内切酶消化的敏感性来证明它们的存在。使用几种不同的检测方法,我们确定了人类免疫球蛋白基因的变量和开关区域中的尿嘧啶残基。尿嘧啶残基在B细胞刺激的24小时内产生,两种DNA链都存在,并被发现主要取代了胞嘧啶碱基。因此,我们的数据提供了第一个直接证据,支持该模型通过脱离DNA中的胞嘧啶残基而不是RNA中的胞嘧啶残基来帮助功能。 来自古细菌的DNA聚合酶通常是热稳定的,并且在聚合酶链反应(PCR)中已使用了几十年。 PCR可以从微小起始量到单个DNA分子对DNA序列的检测,扩增和询问。这使得从临床诊断,预后和法医学到包括分子考古学和古生物学在内的分子遗传学,都可以在医学和生物学上进行丰富的应用。但是,通过存在有效的抑制剂,PCR分析的实用性和从此类标本中恢复的扩增子可以极大地阻碍,甚至消除。 在与Phillip Holliger(MRC,Cambridge UK)的合作研究中,我们使用了八种不同的Thermus DNA聚合酶直系同源物的分子育种和分室化自我复制(CSR),对新颖的DNA聚合酶具有对复杂环境抑制剂的广泛抗性。 一种称为2d9的酶是一种嵌合聚合酶,其中包括源自Thermus aquateus,Thermus Oshimai,Thermus Thermus Thermophilus和Thermus Brockianus的DNA聚合酶的序列元件。 值得注意的是,2D9聚合酶表现出对高度发散组成的复杂抑制剂的抗抗药性,包括腐殖酸,骨粉,coprolite,泥炭提取物,泥炭提取物,富含粘土的土壤,洞穴沉积物和焦油。 我们认为,2D9嵌合聚合酶有望在基于PCR的应用中在广泛的科学领域中具有实用性,包括古生物学,考古学,保护生物学,法医和历史医学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROGER WOODGATE其他文献

ROGER WOODGATE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROGER WOODGATE', 18)}}的其他基金

DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
  • 批准号:
    10266476
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:
Dna Replication, Repair, And Mutagenesis In Eukaryotic A
真核生物 A 中的 DNA 复制、修复和突变
  • 批准号:
    6671878
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
  • 批准号:
    8736845
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
  • 批准号:
    9550317
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
  • 批准号:
    10908165
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
  • 批准号:
    8149277
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:
DNA REPLICATION, REPAIR, AND MUTAGENESIS IN EUKARYOTIC AND PROKARYOTIC CELLS
真核和原核细胞中的 DNA 复制、修复和诱变
  • 批准号:
    6290230
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic
真核生物中的 DNA 复制、修复和突变
  • 批准号:
    6992855
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:
DNA Replication, Repair, and Mutagenesis in Eukaryotic a
真核生物中的 DNA 复制、修复和突变
  • 批准号:
    6508761
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:
DNA Replication, Repair, and Mutagenesis In Eukaryotic And Prokaryotic Cells
真核和原核细胞中的 DNA 复制、修复和诱变
  • 批准号:
    7968592
  • 财政年份:
  • 资助金额:
    $ 214.31万
  • 项目类别:

相似国自然基金

嗜热古细菌淀粉普鲁兰酶双功能催化机制的解析与水解活性的定向进化
  • 批准号:
    31671801
  • 批准年份:
    2016
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
古细菌CCC1家族铁/锰离子跨膜转运蛋白的结构生物学研究
  • 批准号:
    31200550
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
古细菌aDim2p、a/eIF2和核糖体30S亚基之间相互作用分子机制的初步研究
  • 批准号:
    31070659
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
嗜热古细菌麦芽糖基淀粉酶催化异黄酮转糖基化反应机理的研究
  • 批准号:
    31000760
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
古菌Sulfolobus tokodaii甘油醛脱氢酶及其对非磷酸化Entner-Doudoroff糖酵解代谢的调控机制
  • 批准号:
    30900039
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Harnessing the potential of Archaea - Training Europe's next visionaries for an innovative and sustainable future
利用古生菌的潜力 - 培训欧洲的下一代有远见的人以实现创新和可持续的未来
  • 批准号:
    EP/Y031407/1
  • 财政年份:
    2024
  • 资助金额:
    $ 214.31万
  • 项目类别:
    Research Grant
The mobilome of the anaerobic methanotrophic archaea Methanoperedenaceae
厌氧甲烷氧化古菌 Methanoperedenaceae 的移动组
  • 批准号:
    DP240100992
  • 财政年份:
    2024
  • 资助金额:
    $ 214.31万
  • 项目类别:
    Discovery Projects
Asgard archaea: the first eukaryotic cells?
阿斯加德古菌:第一个真核细胞?
  • 批准号:
    DP230100769
  • 财政年份:
    2023
  • 资助金额:
    $ 214.31万
  • 项目类别:
    Discovery Projects
DRUG DISCOVERY BY DIRECTED EVOLUTION IN MAMMALIAN CELLS
通过哺乳动物细胞定向进化发现药物
  • 批准号:
    10644749
  • 财政年份:
    2023
  • 资助金额:
    $ 214.31万
  • 项目类别:
Active-site models unravel mechanism of enzymatic alkane activation
活性位点模型揭示了酶促烷烃活化的机制
  • 批准号:
    10711929
  • 财政年份:
    2023
  • 资助金额:
    $ 214.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了