Molecular Mechanisms of Cell Invasion
细胞侵袭的分子机制
基本信息
- 批准号:8328697
- 负责人:
- 金额:$ 28.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-25 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressAdhesionsAdhesivesAreaAscitesBiochemicalBiogenesisBiologyBloodBody FluidsBuild-itCell membraneCell physiologyCell surfaceCell-Cell AdhesionCellsClinicalCommunicationCytoskeletonDepositionDiagnosticDiseaseDisease ProgressionDistalDown-RegulationEffectivenessElementsEnvironmentExcisionExtracellular MatrixFundingGoalsGrowth FactorIntegrinsInvadedInvestigationLeadLifeLocationMalignant NeoplasmsMediatingMediator of activation proteinMembraneMembrane Protein TrafficMetalloproteasesMethodsMolecularMyosin Light ChainsMyosin Type IINeoplasm MetastasisPathway interactionsPeptide HydrolasesPhenotypePhosphorylationPopulationPrimary NeoplasmProcessProtein FamilyProteinsProteolysisRecruitment ActivityRecyclingRegulationResearchResistanceSignal PathwaySignal TransductionSiteSorting - Cell MovementStructureSurfaceTestingTherapeuticTherapeutic InterventionTissuesTumor BiologyTumor Cell BiologyTumor Cell InvasionUnited States National Institutes of HealthUrineVesicleWorkbasecancer complicationcancer diagnosiscell motilityextracellularfascininsightinterestmemberneoplastic cellparacrineparticlereceptorrhotherapeutic targettumor
项目摘要
DESCRIPTION (provided by applicant): This is an application to investigate the mechanisms of microvesicle biogenesis in invasive tumor cells. It builds on exciting findings generated with previous NIH funding on a unique population of vesicles, called microvesicles that contain functionally active proteases and are released by tumor cells as they acquire invasive potential. The release of protease-loaded microvesicles may serve as a mechanism to bring about matrix degradation and perhaps even deposit paracrine information at distal locations, thus creating paths of "least resistance" as tumor cells invade and migrate through surrounding tissue. This is distinct from pericellular proteolysis at invadopodia, which enables localized matrix degradation juxtaposed to the leading edge. Discovering that there may exist more than one mode of proteolytic invasion, limits the effectiveness of any invasion-targeted therapeutic strategy that does not include both focal and distal proteolysis. While a significant amount of research has been directed to the understanding mechanisms of invadopodia formation and function at sites of cell invasion, microvesicles biogenesis and function remains a relatively understudied area of tumor biology. However, recent accruing evidence demonstrating the bona fide presence of microvesicles in body fluids (blood, urine and ascites), and their potential to serve as indicators of disease, has extended interest and intensified research efforts in microvesicle biology and function. The overarching objective of this application is to define molecular mechanisms of microvesicle formation. The project focuses on the central hypothesis that specific ARF and Rab proteins direct membrane type proteases and other proteins to sites of microvesicle biogenesis and that tight interchanges between RhoA and Rac1 signaling governs the plasticity required for switching between microvesicle and invadopodia-mediated proteolytic invasion. We will address two specific aims. In the first aim, we will define endocytic recycling pathways that direct cargo to sites of microvesicle biogenesis as well as examine how recruitment of specific Rab effectors regulate actomyosin-based contraction required for microvesicle biogenesis. In the second aim, we will examine the spatial activation of RhoA and Rac1 in invasive tumor cells. We will also investigate potential mechanisms that regulate Rac1 down regulation during microvesicle formation and how Rho signaling facilitates the process. Given recent heightened interest in the biology and clinical promise of microvesicles, these investigations are highly current. They will advance present understanding of microvesicle biogenesis and have potential to provide targets for diagnostic as well as therapeutic application.
描述(由申请人提供):这是研究浸润性肿瘤细胞中微泡生物发生机制的应用。它建立在以前的NIH资金上产生的令人兴奋的发现,这些发现在独特的囊泡中,称为含有功能活性蛋白酶的微泡,并在肿瘤细胞获得侵入性潜力时释放。蛋白酶负载的微泡的释放可能是使基质降解甚至在远端位置沉积旁分泌信息的一种机制,从而产生了“最小电阻”的路径,因为肿瘤细胞侵入并通过周围的组织迁移。这与内细胞蛋白水解在Invadopodia上不同,这使局部基质降解并置与前缘。发现可能存在多种蛋白水解侵袭的一种模式,因此限制了任何不包括局灶性和远端蛋白水解的入侵靶向治疗策略的有效性。尽管大量研究已针对细胞侵袭部位的缺乏症形成和功能的理解机制,但微囊泡的生物发生和功能仍然是相对研究的肿瘤生物学领域。然而,最近的证据表明,体液(血液,尿液和腹水)中微泡的真正存在,以及它们作为疾病指标的潜力,扩大了对微丝生物学和功能的兴趣,并加强了研究工作。该应用的总体目标是定义微泡形成的分子机制。该项目的重点是一个中心假设:特定的ARF和RAB蛋白将膜类型蛋白酶和其他蛋白直接到微丝生物发生部位,并且RhoA和Rac1信号之间的紧密互换控制了微伏和Invadopodopodia介导的蛋白质解体蛋白质解体所需的可塑性。我们将解决两个具体目标。在第一个目的中,我们将定义内吞回收途径,该途径将货物引导到微丝菌生物发生部位,并检查特定RAB效应子的募集如何调节基于肌动菌素的基于肌动菌素的收缩。在第二个目标中,我们将检查侵入性肿瘤细胞中RhoA和Rac1的空间激活。我们还将研究在微泡形成过程中调节Rac1调节的潜在机制,以及RHO信号如何促进该过程。鉴于最近对微囊泡的生物学和临床希望提高了兴趣,这些研究是高度最新的。他们将提高人们对微泡生物发生的了解,并具有为诊断和治疗应用提供靶标的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CRISLYN D'SOUZA-SCHOREY其他文献
CRISLYN D'SOUZA-SCHOREY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CRISLYN D'SOUZA-SCHOREY', 18)}}的其他基金
New insights into extracellular signal transduction
细胞外信号转导的新见解
- 批准号:
10566506 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Pro-tumorigenic roles of a VHL isoform in Clear Cell Renal Cell Carcinoma
VHL 亚型在透明细胞肾细胞癌中的促肿瘤作用
- 批准号:
10649049 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
丙酮酸激酶催化肌动球蛋白磷酸化调控肉嫩度的分子机制
- 批准号:32372263
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:32172242
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Role of the S100 Family of Proteins in Lens Physiology and Cataract
S100 蛋白家族在晶状体生理学和白内障中的作用
- 批准号:
10560827 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别: