Image-Based Modeling of Ca2+ Signaling in Ventricular Myocytes
基于图像的心室肌细胞 Ca2 信号传导建模
基本信息
- 批准号:7940176
- 负责人:
- 金额:$ 36.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-21 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:Academic Research Enhancement AwardsAlgorithmsAnatomic ModelsApoptosisArchitectureBindingBiologicalCalciumCalcium SignalingCardiacCardiac MyocytesCell physiologyCellsCellular StructuresCessation of lifeCommunitiesComputersCountryCouplingDataDiseaseDoctor of PhilosophyElectronsElementsEncapsulatedEnvironmentEventFertilizationGenerationsGoalsHeart AtriumHeart DiseasesHeart failureHumanImageImageryMembraneMethodsMicroscopicModelingMonte Carlo MethodMuscle CellsMyocardial ContractionOrganellesPlayPrevalencePrincipal InvestigatorProcessProteinsRecoveryResearchRoleSarcoplasmic ReticulumSignal TransductionSpecific qualifier valueSurfaceTechniquesTestingThree-Dimensional ImagingTo specifyUnited StatesUnited States National Institutes of HealthVariantVentricularbasebioimagingfundamental researchgraphical user interfaceimage processinginterestmathematical modelmembrane modelmodels and simulationpublic health relevanceresponsesimulationtooluser-friendly
项目摘要
DESCRIPTION (provided by applicant): Calcium has been one of the most versatile biological messengers in a cell, playing critical roles in regulating the cell's functions. In particular, the transient change of calcium concentration in cardiac muscle cells (myocytes) forms the basis of cell-wide contraction that eventually results in the whole heart contraction. Studying calcium signaling in cardiac myocytes is thus a fundamental research topic in understanding the excitation-contraction (E-C) coupling in the cells and ultimately revealing the microscopic mechanism of heart disease. The main goal of the present proposal is to utilize three-dimensional (3D) electron microscopic (EM) images and mathematical simulation techniques to explore image-based modeling of calcium signaling in ventricular myocytes to achieve a realistic understanding of the microscopic environment of heart disease. The specific aims of the proposed studies are: (A) Constructing realistic geometric models from advanced 3D EM imaging data. Efficient computational approaches of image processing, analysis and geometric modeling will be developed and implemented to extract the sub-cellular structures of interest and to construct high-fidelity, high-quality surface and volumetric meshes that will be used in the subsequent mathematical simulation. (B) Characterizing calcium signaling using both stochastic and deterministic methods. We shall explore how unitary calcium release events (i.e. calcium sparks) are formed within/around a single CRU using the Monte Carlo method. Anatomical models extracted from 3D EM images will be used to specify the simulation domains. In addition, finite element (deterministic) methods will be employed to investigate the calcium signaling (waves) across CRUs, where the simulation domains will be specified with realistic geometric models extracted from advanced 3D EM images. Both normal and diseased ventricular myocytes will be investigated. (C) Developing a graphical user interface (GUI) to streamline anatomical modeling and visualization of biomedical images. A user-friendly GUI will be created to encapsulate all the computational modules for image processing, feature extraction, and mesh generation. This toolkit is made to streamline multiple computational processes from 2D/3D images to 3D anatomical models and will be made available to the biomedical community.
PUBLIC HEALTH RELEVANCE: Heart failure has been one of the leading causes of human deaths in many countries including the United States. The prevalence of this disease is largely due to our lack of accurate understanding of excitation-contraction (E-C) coupling in cardiomyocytes. Computer and mathematical modeling of calcium signaling has been an important way to achieve this goal. The proposed study will enable us to model calcium signaling using the structural information extracted from the 3D imaging data, which would provide a more realistic and accurate understanding of the mechanism of heart disease.
描述(由申请人提供):钙是细胞中最通用的生物信使之一,在调节细胞功能中发挥着关键作用。特别是,心肌细胞(肌细胞)中钙浓度的瞬时变化形成了细胞范围收缩的基础,最终导致整个心脏收缩。因此,研究心肌细胞中的钙信号传导是了解细胞中兴奋-收缩(E-C)耦合并最终揭示心脏病微观机制的基础研究课题。本提案的主要目标是利用三维(3D)电子显微镜(EM)图像和数学模拟技术来探索心室肌细胞中钙信号传导的基于图像的建模,以实现对心脏病微观环境的真实理解。拟议研究的具体目标是: (A) 从先进的 3D EM 成像数据构建真实的几何模型。将开发和实施图像处理、分析和几何建模的有效计算方法,以提取感兴趣的亚细胞结构,并构建将在后续数学模拟中使用的高保真、高质量表面和体积网格。 (B) 使用随机和确定性方法表征钙信号传导。我们将探索如何使用蒙特卡罗方法在单个 CRU 内/周围形成单一钙释放事件(即钙火花)。从 3D EM 图像中提取的解剖模型将用于指定模拟域。此外,将采用有限元(确定性)方法来研究跨 CRU 的钙信号(波),其中将使用从高级 3D EM 图像提取的真实几何模型来指定模拟域。将研究正常和患病的心室肌细胞。 (C) 开发图形用户界面 (GUI) 以简化生物医学图像的解剖建模和可视化。将创建一个用户友好的 GUI 来封装用于图像处理、特征提取和网格生成的所有计算模块。该工具包旨在简化从 2D/3D 图像到 3D 解剖模型的多个计算过程,并将提供给生物医学界。
公共卫生相关性:心力衰竭一直是包括美国在内的许多国家人类死亡的主要原因之一。这种疾病的流行很大程度上是由于我们对心肌细胞的兴奋-收缩(E-C)耦合缺乏准确的理解。钙信号传导的计算机和数学建模是实现这一目标的重要途径。拟议的研究将使我们能够利用从 3D 成像数据中提取的结构信息对钙信号传导进行建模,这将提供对心脏病机制的更现实和准确的理解。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel acceleration for modeling of calcium dynamics in cardiac myocytes.
心肌细胞钙动力学建模的并行加速。
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:1
- 作者:Liu, Ke;Yao, Guangming;Yu, Zeyun
- 通讯作者:Yu, Zeyun
Parallel acceleration for modeling of calcium dynamics in cardiac myocytes.
心肌细胞钙动力学建模的并行加速。
- DOI:
- 发表时间:2013-01-01
- 期刊:
- 影响因子:1
- 作者:Liu, Ke;Yao, Guangming;Yu, Zeyun
- 通讯作者:Yu, Zeyun
Quality Mesh Smoothing via Local Surface Fitting and Optimum Projection.
通过局部表面拟合和最佳投影实现高质量网格平滑。
- DOI:
- 发表时间:2011-07-01
- 期刊:
- 影响因子:1.7
- 作者:Wang, Jun;Yu, Zeyun
- 通讯作者:Yu, Zeyun
Numerical analysis of the effect of T-tubule location on calcium transient in ventricular myocytes.
T 管位置对心室肌细胞钙瞬变影响的数值分析。
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:1
- 作者:George, Uduak Z;Wang, Jun;Yu, Zeyun
- 通讯作者:Yu, Zeyun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zeyun Yu其他文献
Zeyun Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 36.42万 - 项目类别:
Brain-wide Neuronal Circuit Mapping with X-ray Nano-Holography
利用 X 射线纳米全息术绘制全脑神经元回路
- 批准号:
10877549 - 财政年份:2023
- 资助金额:
$ 36.42万 - 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 36.42万 - 项目类别:
4D Multimodal Image-Based Modeling for Bicuspid Aortic Valve Repair Surgery
二叶式主动脉瓣修复手术的 4D 多模态基于图像的建模
- 批准号:
10420584 - 财政年份:2022
- 资助金额:
$ 36.42万 - 项目类别:
Data-Driven Automation of Patient-Specific Finite Element Modeling for TAVR
TAVR 患者特定有限元建模的数据驱动自动化
- 批准号:
10683708 - 财政年份:2022
- 资助金额:
$ 36.42万 - 项目类别: