NAD catabolism and mitochondrial dysfunction in acute neurodegenerative disease

急性神经退行性疾病中 NAD 分解代谢和线粒体功能障碍

基本信息

  • 批准号:
    8043311
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Impairments in mitochondrial functions have been frequently implicated in ischemic brain injury associated with stroke or cardiac arrest. However, the extent to which mitochondrial dysfunction in neurons and glia contribute to neurodegeneration is unknown and the mechanisms leading to mitochondrial failure are elusive. Mitochondrial impairment can result from activation of the permeability transition pore or excessive mitochondrial fission leading to loss of matrix pyridine nucleotides (NAD+, NADP+) and consequent detrimental NAD+ catabolism. We hypothesize that the major cellular NAD-regulating enzyme CD38 can significantly contributes to intracellular NAD+ hydrolysis following an ischemic insult and that inhibition of this enzyme will dramatically ameliorate the ischemic brain injury. This notion is strongly supported by our preliminary data that suggest promising protection against ischemic brain damage by nicotinamide mononucleotide (NMN), a naturally occurring compound that inhibits CD38 NAD+ glycohydrolase and also feeds into the NAD+ salvage pathway. The primary goal of this study is to determine whether pathologic morphological changes of neuronal or astrocytic mitochondria precedes brain tissue NAD+ depletion and, whether neuronal or astrocytic activity of CD38 is a major contributor to NAD+ hydrolysis following ischemia. To address these questions we propose to: 1. Utilize our unique transgenic animals that express fluorescent marker proteins specific either to neuronal or to astrocytic mitochondria. These animals will be used to quantify mitochondrial morphometric alterations specifically in neurons or astrocytes in brain. 2. To determine the specific role of CD38 in post-insult NAD+ catabolism we will utilize a CD38-null mice. The role of CD38 in cell death of astrocytes and neurons will be examined by exposing the pure neuronal and astrocytic cell culture to oxygen/glucose deprivation and by subjecting CD38 deficient animals to transient forebrain ischemia. 3. Examine the mechanisms of NMN protection against ischemic damage. We will perform both dose-dependent and time-effect studies with NMN administration following ischemic insult. After the designated recovery period, the histological and neurological outcome will be examined. The significance of this work is that it proposes both mechanistic and translational approaches to unravel the mechanisms of neuronal and astrocytic NAD+ catabolism and determine its role in acute brain injury. Furthermore, the identification of NMN protective mechanisms will significantly impact the clinical application of NAD+ precursors as therapeutic compounds for acute brain injury as stroke and TBI or chronic neurodegenerative disease. PUBLIC HEALTH RELEVANCE: With the high prevalence of stroke risk factors among veterans, including age, it is not surprising that stroke is extremely common in this population, with approximately 40,000 strokes per year. Stroke is the 3rd leading cause of death and the leading cause of disability in the US, placing a great demand on VA to provide disability and long-term care. Although there have been advances in stroke prevention, there is still a great need for new therapies to improve the outcomes of both acute stroke survivors and veterans with physical and cognitive disabilities after stroke. By focusing on understanding injury mechanisms that leads to mitochondrial and ultimately cellular bioenergetic failure, the research in this grant will promote the development of treatments with the ability to improve the long-term clinical outcome for stroke victims. Since cell death mechanisms triggered by stroke are very similar to those causing brain damage due to traumatic brain injury, the new therapeutic approaches studied in this project will also have significant implication for treatment of TBI victims.
描述(由申请人提供): 线粒体功能受损经常与中风或心脏骤停相关的缺血性脑损伤有关。然而,神经元和神经胶质细胞的线粒体功能障碍在多大程度上导致神经变性尚不清楚,导致线粒体衰竭的机制也难以捉摸。线粒体损伤可能是由于通透性转换孔激活或线粒体过度分裂导致基质吡啶核苷酸(NAD+、NADP+)损失以及随之而来的有害 NAD+ 分解代谢造成的。我们假设主要的细胞 NAD 调节酶 CD38 可以显着促进缺血性损伤后细胞内 NAD+ 水解,并且抑制该酶将显着改善缺血性脑损伤。我们的初步数据有力地支持了这一观点,这些数据表明烟酰胺单核苷酸 (NMN) 有望预防缺血性脑损伤,烟酰胺单核苷酸是一种天然存在的化合物,可抑制 CD38 NAD+ 糖水解酶,也可进入 NAD+ 挽救途径。本研究的主要目标是确定神经元或星形细胞线粒体的病理形态学变化是否先于脑组织 NAD+ 耗尽,以及 CD38 的神经元或星形细胞活性是否是缺血后 NAD+ 水解的主要贡献者。为了解决这些问题,我们建议: 1. 利用我们独特的转基因动物,这些动物表达神经元或星形细胞线粒体特异的荧光标记蛋白。这些动物将用于量化线粒体形态变化,特别是大脑中神经元或星形胶质细胞的变化。 2. 为了确定 CD38 在攻击后 NAD+ 分解代谢中的具体作用,我们将利用 CD38 缺失小鼠。 CD38 在星形胶质细胞和神经元细胞死亡中的作用将通过将纯神经元和星形胶质细胞培养物暴露于氧/葡萄糖剥夺以及使 CD38 缺陷动物经历短暂的前脑缺血来检查。 3. 检查NMN 预防缺血性损伤的机制。我们将在缺血性损伤后进行 NMN 给药的剂量依赖性和时间效应研究。在指定的恢复期后,将检查组织学和神经学结果。这项工作的意义在于,它提出了机械和转化方法来阐明神经元和星形细胞 NAD+ 分解代谢的机制,并确定其在急性脑损伤中的作用。此外,NMN保护机制的确定将显着影响NAD+前体作为治疗化合物用于治疗急性脑损伤(如中风和TBI)或慢性神经退行性疾病的临床应用。 公共卫生相关性: 由于退伍军人中风危险因素(包括年龄)的患病率很高,因此中风在该人群中极为常见也就不足为奇了,每年约有 40,000 例中风。中风是美国第三大死亡原因和导致残疾的主要原因,这对退伍军人管理局提供残疾和长期护理提出了巨大的要求。尽管在中风预防方面取得了进展,但仍然非常需要新的疗法来改善急性中风幸存者和中风后患有身体和认知障碍的退伍军人的结果。通过重点了解导致线粒体和最终细胞生物能衰竭的损伤机制,这项资助的研究将促进能够改善中风患者长期临床结果的治疗方法的开发。由于中风引发的细胞死亡机制与创伤性脑损伤引起的脑损伤非常相似,因此该项目研究的新治疗方法也将对 TBI 受害者的治疗产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TIBOR KRISTIAN其他文献

TIBOR KRISTIAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TIBOR KRISTIAN', 18)}}的其他基金

Using NAD+ precursor for treatment of global cerebral ischemia
利用NAD前体治疗全脑缺血
  • 批准号:
    10294661
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Using NAD+ precursor for treatment of global cerebral ischemia
利用NAD前体治疗全脑缺血
  • 批准号:
    10439887
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Using NAD+ precursor for treatment of global cerebral ischemia
利用NAD前体治疗全脑缺血
  • 批准号:
    10622615
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
  • 批准号:
    10618865
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
  • 批准号:
    9889770
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
  • 批准号:
    10454777
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
ShEEP Request for Keyence BZ-X800E All-in-One Automated Imaging System
ShEEP 请求 Keyence BZ-X800E 一体化自动化成像系统
  • 批准号:
    9793454
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
NAD catabolism and mitochondrial dysfunction in acute neurodegenerative disease
急性神经退行性疾病中 NAD 分解代谢和线粒体功能障碍
  • 批准号:
    8398920
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
NAD catabolism and mitochondrial dysfunction in acute neurodegenerative disease
急性神经退行性疾病中 NAD 分解代谢和线粒体功能障碍
  • 批准号:
    8696791
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
NAD catabolism and mitochondrial dysfunction in acute neurodegenerative disease
急性神经退行性疾病中 NAD 分解代谢和线粒体功能障碍
  • 批准号:
    8246297
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

通过调控颈淋巴结引流促进急性颅脑损伤后神经修复与再生——基于脑-颈淋巴结通路概念的功能与机制研究
  • 批准号:
    82311530117
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    国际(地区)合作与交流项目
应用人工智能深度学习技术构建轻中度颅脑损伤急性期颅内血肿进展预判体系的研究
  • 批准号:
    82171381
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
Netrin-1抑制急性缺血性脑损伤中小胶质细胞介导的炎症反应的作用及机制
  • 批准号:
    82171286
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于小胶质细胞HMGB1/TLR4/NF-κB信号通路探讨针刺在急性一氧化碳中毒脑损伤中的抗炎机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
己糖激酶2通过蛋白激酶活性调节星形胶质细胞外泌体生成参与急性缺血性脑损伤
  • 批准号:
    82071321
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Poly-Matching Causal Inference for Assessing Multiple Acute Medical Managements of Pediatric Traumatic Brain Injuries
用于评估小儿创伤性脑损伤的多种急性医疗治疗的多重匹配因果推理
  • 批准号:
    10586785
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Pterygopalatine Fossa (PPF) Block as an Opioid Sparing Treatment for AcuteHeadache in Aneurysmal Subarachnold Hemorrhage
翼腭窝 (PPF) 阻滞作为阿片类药物节省治疗动脉瘤性蛛网膜下腔出血的急性头痛
  • 批准号:
    10584712
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Monocyte-Derived Microglia in Development and after Neonatal Brain Injury
发育中和新生儿脑损伤后的单核细胞衍生的小胶质细胞
  • 批准号:
    10593385
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Drug repurposing for Alzheimer’s disease-related inflammation caused by a TBI
药物再利用,治疗 TBI 引起的阿尔茨海默病相关炎症
  • 批准号:
    10590132
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
  • 批准号:
    10701231
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了