Quantitative Redox Biology
定量氧化还原生物学
基本信息
- 批准号:7764666
- 负责人:
- 金额:$ 38.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-03-05 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressAnimal ExperimentsAnimalsAntioxidantsBiochemical ProcessBiochemistryBiologicalBiological ProcessBiologyCaliforniaCategoriesCell Culture TechniquesCell modelCell physiologyCellsCellular biologyChemical ModelsChemicalsClinical ProtocolsCommunicationCommunitiesComplexCoupledCouplesCrowdingDataDatabasesDependencyDevelopmentDiffusionDimensionsEnvironmentEnzymesExperimental DesignsFoundationsFree RadicalsGene ExpressionGene ProteinsGenomeGoalsHandHealthHeartHumanHuman GenomeHuman Genome ProjectIn VitroKineticsLipidsLiteratureLocationManuscriptsMeasurementMeasuresMedicalMembraneMetabolismMitochondriaModelingNatureNitrogenNucleic AcidsOsmotic PressureOxidantsOxidation-ReductionOxygenPathologyPathway interactionsPeroxidesPhysiologicalPlant RootsProcessPropertyProtein DatabasesProteinsPublicationsReactionReducing AgentsRegulator GenesResearchResearch PersonnelRouteScienceSignal TransductionSolutionsSystemThermodynamicsTimeTissuesTransport ProcessUnited States National Institutes of HealthUniversitiesVariantWorkbiological researchcostdesignenzyme substrateflexibilitygraduate studentimprovedin vivoinsightmathematical algorithmmathematical modelmeetingsmodel developmentprofessorprogramsprotein functionresearch studysmall moleculesuccesssymposiumtool
项目摘要
DESCRIPTION (provided by applicant): One of the major accomplishments in biology of the last century has been the sequencing of the human genome. This has brought about a revolution, allowing researchers to gain information on cellular proteins, function, and human health issues with entirely new tools. The principal reasons for the whirlwind of advances are the information-rich and broadly accessible genome- and protein-databases. However, in order to fully utilize these new scientific approaches, it remains imperative that the absolute quantitation range of the proteins, lipids, nucleic acids, and the many transient and quasi-stable species present in cells and tissues are determined. In addition, this information must be coupled to the dynamics of the reactions of all relevant species, especially the transient species of metabolism, e.g. reactive oxygen and nitrogen species. Therefore, we propose to address these critical issues in redox biology in this proposed research through four critical Specific Aims. In SA 1 and 2 we will experimentally determine these concentration ranges and needed kinetic and thermodynamic information and couple this with data in the literature. In SA 3 we will initiate the assembly of three categories of information in a publicly available set of databases. These will include: a) absolute concentrations (copy number) of all relevant species that define the redox environment of a cell/tissue -- this will include antioxidant enzymes and proteins, small molecule antioxidants or enzyme substrates, and ROS/RNS; b) the kinetic rate constants for the array of reactions for each species; and c) the thermodynamic parameters for all relevant redox couples. In the fourth SA we will develop initial deterministic or stochastic mathematical models that utilize these parameters to predict the biological state and biological functioning of cells and tissues. These models will be available as lumped-parameter (time-dependent only), 1-D or higher spatial dimension forms to reflect the complexity of the specific dynamic system at hand. Within the model, approximations of the confidence in the models predictability will be provided. These initial models, which will focus on species transport near the mitochondrion, will be publicly available for use in conjunction with the databases developed in SA 3. As experimental verification continues, both the databases and models can be expanded upon by the community to improve representation and prediction of how changes in the redox environment of cells and tissue change their basic biology. The information in these databases and the mathematical models will provide information that can guide the design of animal experiments, minimizing their use, and the development of clinical protocols to maximize success.
UCR PORTION
Dr. Victor G. Rodgers has moved to the University of California at Riverside. With modern systems of communication we have regular meetings to discuss our ongoing projects. With Skype we are able to conference very easily at no cost. He will on average devote 1.0 months/yr of his effort to the project. His efforts will be focused on Specific Aim 4, the development of modular mathematical algorithms to model the redoxome. He has extensive expertise in modeling kinetic and transport processes. He will also work with Professors Srinivason and Buettner to design the data bases so that there is a seamless interface with the mathematical modeling. He will also oversee a TBN graduate student at UCR that will be responsible for the day-to-day development of the modeling systems.Project Narrative:
It is just now being realized that redox biochemistry is at the heart of the basic biology of the cell. In this work we propose to gather into publicly available databases thermodynamic, kinetic, and concentration information on the species at the heart of this redox biochemistry: antioxidants, reducing agents, antioxidant enzymes and proteins, as well as the transient and quasi-stable free radicals and related oxidants. We will construct and make available mathematical models to use this information to understand how the redox environment connects to cell biology and issues of human health; the models can guide experimental design to minimize the use of animals and maximize success in developing new treatments for human health problems.
描述(由申请人提供):上个世纪生物学的主要成就之一是人类基因组测序。这带来了一场革命,使研究人员能够利用全新的工具获取有关细胞蛋白质、功能和人类健康问题的信息。快速进步的主要原因是信息丰富且可广泛访问的基因组和蛋白质数据库。然而,为了充分利用这些新的科学方法,仍然必须确定细胞和组织中存在的蛋白质、脂质、核酸以及许多瞬时和准稳定物质的绝对定量范围。此外,该信息必须与所有相关物种的反应动力学相结合,特别是代谢的瞬时物种,例如。活性氧和氮物种。因此,我们建议在这项拟议的研究中通过四个关键的具体目标来解决氧化还原生物学中的这些关键问题。在 SA 1 和 2 中,我们将通过实验确定这些浓度范围以及所需的动力学和热力学信息,并将其与文献中的数据结合起来。在 SA 3 中,我们将在一组公开可用的数据库中启动三类信息的组装。这些将包括: a) 定义细胞/组织氧化还原环境的所有相关物种的绝对浓度(拷贝数)——这将包括抗氧化酶和蛋白质、小分子抗氧化剂或酶底物以及 ROS/RNS; b) 每种物质的一系列反应的动力学速率常数; c) 所有相关氧化还原对的热力学参数。在第四个 SA 中,我们将开发初始确定性或随机数学模型,利用这些参数来预测细胞和组织的生物状态和生物功能。这些模型将以集总参数(仅与时间相关)、一维或更高空间维度的形式提供,以反映当前特定动态系统的复杂性。在模型内,将提供模型可预测性的置信度的近似值。这些初始模型将重点关注线粒体附近的物种运输,将与 SA 3 中开发的数据库一起公开使用。随着实验验证的继续,社区可以扩展数据库和模型,以提高代表性并预测细胞和组织氧化还原环境的变化如何改变其基本生物学。这些数据库和数学模型中的信息将提供可以指导动物实验设计、最大限度地减少其使用以及临床方案开发以最大限度地取得成功的信息。
加州大学河滨分校部分
Victor G. Rodgers 博士已调至加州大学河滨分校。借助现代通信系统,我们定期召开会议来讨论我们正在进行的项目。借助 Skype,我们可以轻松、免费地召开会议。他平均每年会为该项目投入 1.0 个月的时间。他的工作重点是 Specific Aim 4,即开发用于模拟氧化还原体的模块化数学算法。他在动力学和传输过程建模方面拥有丰富的专业知识。他还将与 Srinivason 和 Buettner 教授合作设计数据库,以便与数学建模实现无缝接口。他还将监督 UCR 的一名 TBN 研究生,该研究生将负责建模系统的日常开发。项目叙述:
人们现在才认识到氧化还原生物化学是细胞基础生物学的核心。在这项工作中,我们建议将氧化还原生物化学核心物种的热力学、动力学和浓度信息收集到公开数据库中:抗氧化剂、还原剂、抗氧化酶和蛋白质,以及瞬态和准稳定自由基及相关氧化剂。我们将构建并提供可用的数学模型,以使用这些信息来了解氧化还原环境如何与细胞生物学和人类健康问题联系起来;这些模型可以指导实验设计,最大限度地减少动物的使用,并最大限度地成功开发人类健康问题的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Garry R Buettner其他文献
Garry R Buettner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Garry R Buettner', 18)}}的其他基金
The chemical biology of pharmacological ascorbate in cancer treatment
药理学抗坏血酸在癌症治疗中的化学生物学
- 批准号:
9057989 - 财政年份:2013
- 资助金额:
$ 38.76万 - 项目类别:
The chemical biology of pharmacological ascorbate in cancer treatment
药理学抗坏血酸在癌症治疗中的化学生物学
- 批准号:
9262878 - 财政年份:2013
- 资助金额:
$ 38.76万 - 项目类别:
The chemical biology of pharmacological ascorbate in cancer treatment
药理学抗坏血酸在癌症治疗中的化学生物学
- 批准号:
8658412 - 财政年份:2013
- 资助金额:
$ 38.76万 - 项目类别:
The chemical biology of pharmacological ascorbate in cancer treatment
药理学抗坏血酸在癌症治疗中的化学生物学
- 批准号:
8840819 - 财政年份:2013
- 资助金额:
$ 38.76万 - 项目类别:
The chemical biology of pharmacological ascorbate in cancer treatment
药理学抗坏血酸在癌症治疗中的化学生物学
- 批准号:
8503948 - 财政年份:2013
- 资助金额:
$ 38.76万 - 项目类别:
2010 Oxygen Radicals: Mechanisms that Underpin Redox Biology - a Gordon Research
2010 氧自由基:支撑氧化还原生物学的机制 - 戈登研究
- 批准号:
7907172 - 财政年份:2010
- 资助金额:
$ 38.76万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 38.76万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 38.76万 - 项目类别:
Subchondral Trabecular Plate and Rod Abnormalities in Human Osteoarthritis
人类骨关节炎的软骨下小梁板和杆异常
- 批准号:
10660605 - 财政年份:2023
- 资助金额:
$ 38.76万 - 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
- 批准号:
10572864 - 财政年份:2023
- 资助金额:
$ 38.76万 - 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
- 批准号:
10606258 - 财政年份:2023
- 资助金额:
$ 38.76万 - 项目类别: