Fecal Phage: Exposing Unknown in the Dark Matter of the Human Gut
粪便噬菌体:暴露人类肠道暗物质中的未知物质
基本信息
- 批准号:8532486
- 负责人:
- 金额:$ 38.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-23 至 2014-08-22
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmino Acid SequenceAntibiotic ResistanceBackBacteriaBacterial GenesBacteriophagesBiodiversityBioinformaticsBiologicalBiological AssayBiological Neural NetworksBiological ProcessCapsid ProteinsCellsCholera ToxinCommunitiesComputer SimulationCrohn&aposs diseaseDNA SequenceDataDigestionEmployee StrikesEscherichia coliFamilyFamily health statusGastrointestinal tract structureGenbankGenesGeneticGenetic VariationGoalsHealthHomologous GeneHumanHypersensitivityImmune System DiseasesImmunityIndividualInsulin-Dependent Diabetes MellitusKnowledgeLightLinkMHC Class II GenesMass Spectrum AnalysisMetabolicMetabolic DiseasesMetabolismMetagenomicsMethodsMothersNatureObesityOceansOpen Reading FramesPathogenicityPeptide Sequence DeterminationPersonsPhenotypePopulationProteinsProteomicsPublishingReadingResearchResearch Project GrantsSamplingSequence HomologyStructural GenesStructural ProteinStructureTechniquesTimeTrainingTwin Multiple BirthVariantViralViral GenesViral GenomeViral PackagingViral PhysiologyVirionVirusanalogbasegene functionhuman dataimmune functionimprovedmetagenomemetagenomic sequencingmicrobial communitynovelprogramsprotein aminoacid sequenceresearch studytraitvirome
项目摘要
DESCRIPTION (provided by applicant): Viruses are the most abundant, most diverse, and least understood biological entities on Earth. Humans contain at least several trillion viruses, largely phage (bacteriophage) infecting the bacteria in the gastrointestinal tract. Because viruses use their host cells to reproduce, they can impact the host populations. Gut phage possess genes which are integral to the biological functions of both their bacterial hosts and the humans they inhabit. While they potentially affect digestion, pathogenicity and immune function, currently, very little is known about this critical community. The goal of this research project isto develop novel high- throughput methods to rapidly reveal and characterize the diversity of this biological "dark matter." In the preliminary study of fecal viral communities from four pairs of twins and their mothers, we showed that 80% of viral genomes have little similarity to known sequences. Viral genes evolve rapidly, making homology- based searches for sequence function difficult. The focus of our research will be to characterize this unknown community using existing techniques, including the elucidation of the phenotype and structure of 100 unknown viral genes. In Aim 1, the genetic and functional diversity of the viral metagenomes will be characterized. Viral genes which are present in multiple people or stable through time will be examined, with a focus on those which are likely to have metabolic functions affecting the host. In Aim 2 proteomics of samples enriched for viral capsid and structural proteins will be used to link those protein sequences with the DNA sequences, and artificial neural networks will be used to search for similar sequences in the metagenomes. Aim 3 focuses on characterizing the function of metabolic genes that may affect the host. The 100 selected sequences will be expressed in E. coli, their effect on phenotype will be assayed with metabolic arrays and mass spectrometry of metabolites, and their 3D crystal structures will be determined in order to search for structural homology rather than sequence homology. The link between the presence of a predicted metabolic gene and human host health traits, such as obesity, will be evaluated. Combined, these approaches will greatly increase our knowledge of the nature of these unexplored viral communities. An understanding of uncharacterized viral gene function in the human gut will not only shed light on the twin- and-mother communities we are studying directly, it will also address questions about the known correlations between human health and gut viruses. This research will likely improve our fundamental understanding of the interactions of viruses, bacteria, human metabolism and immunity. Discoveries related to the progression of auto-immune diseases, metabolic disorders, allergies and many other conditions may become possible.
描述(由申请人提供):病毒是地球上最丰富,最多样化,最了解的生物实体。人类至少含有几万亿病毒,主要噬菌体(噬菌体)感染了胃肠道中的细菌。由于病毒使用其宿主细胞繁殖,因此它们会影响宿主种群。肠噬菌体具有其细菌宿主和他们所居住的人类的生物学功能不可或缺的基因。尽管它们有可能影响消化,致病性和免疫功能,但目前对这个关键社区知之甚少。该研究项目的目的是开发新型的高通量方法,以迅速揭示和表征这种生物学“暗物质”的多样性。在对四对双胞胎及其母亲的粪便病毒群落的初步研究中,我们表明80%的病毒基因组与已知序列几乎没有相似之处。病毒基因迅速发展,使基于同源的序列功能的搜索变得困难。我们研究的重点是使用现有技术来表征这个未知社区,包括阐明100个未知病毒基因的表型和结构。在AIM 1中,将表征病毒宏基因组的遗传和功能多样性。将检查在多人或稳定的时间内存在的病毒基因,重点是可能具有影响宿主的代谢功能的病毒基因。在AIM 2中,将使用富含病毒衣壳的样品的蛋白质组学和结构蛋白将这些蛋白质序列与DNA序列联系起来,并将使用人工神经网络来搜索宏基因组中的相似序列。 AIM 3专注于表征可能影响宿主的代谢基因的功能。 100个选定的序列将在大肠杆菌中表达,它们对表型的影响将用代谢阵列和代谢产物的质谱法测定,并确定其3D晶体结构,以搜索结构同源性而不是序列同源性。将评估预测的代谢基因的存在与人类宿主健康特征(例如肥胖)之间的联系。结合在一起,这些方法将大大提高我们对这些未开发的病毒群落的性质的了解。对人类肠道中未表征的病毒基因功能的理解不仅会揭示我们直接研究的双胞胎和母亲社区,还将解决有关人类健康与肠道病毒之间已知相关性的问题。这项研究可能会提高我们对病毒,细菌,人类代谢和免疫力的相互作用的基本理解。与自身免疫性疾病,代谢性疾病,过敏和许多其他疾病的进展有关的发现可能成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FOREST L ROHWER其他文献
FOREST L ROHWER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FOREST L ROHWER', 18)}}的其他基金
Hydra as an Antiviral Innate Immunity Model System
Hydra 作为抗病毒先天免疫模型系统
- 批准号:
8233283 - 财政年份:2011
- 资助金额:
$ 38.17万 - 项目类别:
Hydra as an Antiviral Innate Immunity Model System
Hydra 作为抗病毒先天免疫模型系统
- 批准号:
8096864 - 财政年份:2011
- 资助金额:
$ 38.17万 - 项目类别:
Ecology of Cystic Fibrosis: Administrative Supplement
囊性纤维化的生态学:行政补充
- 批准号:
8637669 - 财政年份:2010
- 资助金额:
$ 38.17万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Applying Spatial Covariance to Understand Human Variation in Genetic Disease
应用空间协方差来了解遗传疾病的人类变异
- 批准号:
10734426 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Myocardial Physiology of Growth Differentiation Factor Signaling
生长分化因子信号传导的心肌生理学
- 批准号:
10711086 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别: