High Throughput Method to Assess SNP Functionality in Prostate Cancer
高通量方法评估前列腺癌中的 SNP 功能
基本信息
- 批准号:8336846
- 负责人:
- 金额:$ 14.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-21 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:8q24Adverse effectsAffectAffinityBindingBinding ProteinsBinding SitesBiological AssayCancer EtiologyCellsClinicColorectal CancerCustomDNADNA BindingDNA Microarray ChipDNA SequenceDataDevicesDiagnosisDiagnostic Neoplasm StagingDiseaseDisease modelDrug Delivery SystemsFluorescenceGene Expression RegulationGenesGeneticGenetic VariationGenomeGenomicsGoalsHandHuman GenomeIncidenceIncubatedIndustryJunk DNALaboratoriesMalignant NeoplasmsMalignant neoplasm of ovaryMalignant neoplasm of prostateMarketingMeasuresMedicalMedicineMethodsPathway interactionsPatientsPhasePositioning AttributePrevalenceProtein MicrochipsProteinsRiskRisk AssessmentS-nitro-N-acetylpenicillamineServicesSingle Nucleotide PolymorphismSiteSorting - Cell MovementSourceSpecificityTCF Transcription FactorTechnologyTherapeuticTranslatingUnited StatesVariantcancer cellcancer diagnosiscancer typechromatin immunoprecipitationcommercializationcostdesigndisorder riskds-DNAimprovedmalignant breast neoplasmmenpatient populationpreferenceprototyperesearch studytherapeutic targettranscription factortumor molecular fingerprint
项目摘要
Project Summary
High Throughput Method to Assess SNP Functionality in Prostate Cancer
PIs: Christopher L. Warren and Mary S. Ozers
A critical unmet need in implementing personalized medicine is the ability to sort through the millions of
single nucleotide polymorphisms (SNPs) present in the human genome and to pinpoint which of these DNA
variations are causative in disease. A key under-studied function of SNPs is their ability to generate or
disrupt genomic binding sites for transcription factors involved in cancer. Toward this goal, we are inventing
the SNP-SNAP (Specificity and Affinity for Proteins) microarray as a prototype high throughput device to
evaluate SNP function. The SNP-SNAP arrays will be used to display a quarter-million prostate cancer-
related SNPs as double-stranded DNA molecules and to assay transcription factors (i.e. drug targets) for
their binding to these SNP DNA sequences. The resulting data will be correlated with prostate cancer
incidence. The million-plus data points from the SNP-SNAP arrays will be analyzed using SNP-Sequence
Specificity Landscapes, creating a prostate cancer "molecular signature" that relates transcription factor
binding, SNP preferences, and chromosomal position of the nearest genes. Our findings will also relate
prostate cancer-associated SNP function with cancer stage and aggressiveness. Understanding SNP
function will have a major impact on personalized medicine, by providing individualized disease risk
assessment, identifying new personalized therapeutic targets, and predicting efficacy and potential off-
target side effects of common therapeutics. The goals of this Phase I project are to:
1. Design and synthesize a customized SNP-SNAP DNA microarray to tile across a quarter-million SNPs
that are associated with prostate cancer.
2. Examine the DNA binding specificity and affinity of 5 prostate cancer-related transcription factors, as
purified proteins and from cell lysates, on the SNP-SNAP array and annotate the human genome with the
transcription factor binding differences due to SNPs. Verify results with chromatin immunoprecipitation in
prostate cancer cells.
3. Obtain SNP data from patients with prostate cancer and determine if there is a statistically significant
association of functional SNPs, which yielded differential binding of prostate cancer specific transcription
factors on the SNP-SNAP array, with prostate cancer incidence.
This technology can assay millions of SNPs and multiple transcription factors simultaneously, thus
representing one of the first methods to evaluate SNP functionality in a high throughput manner. Our SNP-
SNAP technology, by virtue of the array custom design and ability to examine millions of DNA permutations,
is also broadly applicable to any cancer type and disease model.
项目摘要
评估前列腺癌中SNP功能的高通量方法
PIS:Christopher L. Warren和Mary S. Ozers
实施个性化医学的至关重要的需求是能够分类数百万
人类基因组中存在的单核苷酸多态性(SNP),并查明这些DNA中的哪个
变异在疾病中是病因。 SNP的关键功能不足的功能是它们生成或
破坏涉及癌症转录因子的基因组结合位点。达到这个目标,我们正在发明
SNP-SNAP(蛋白质的特异性和亲和力)微阵列作为原型高吞吐装置
评估SNP功能。 SNP-SNAP阵列将用于展示250万个前列腺癌 -
相关的SNP作为双链DNA分子和分析转录因子(即药物靶标)的相关SNP
它们与这些SNP DNA序列的结合。所得数据将与前列腺癌相关
发病率。 SNP序列将分析SNP-SNAP阵列中的百万多个数据点
特异性景观,形成与转录因子相关的前列腺癌“分子签名”
最近基因的结合,SNP偏好和染色体位置。我们的发现也将与
前列腺癌相关的SNP与癌症阶段和侵略性相关。了解SNP
通过提供个性化疾病风险,功能将对个性化医学产生重大影响
评估,确定新的个性化治疗靶标,并预测功效和潜在的效果
常见治疗剂的目标副作用。我项目的目标是:
1。设计和合成一个定制的SNP-SNAP DNA微阵列,遍及250万SNP
与前列腺癌相关的。
2。检查5个前列腺癌相关转录因子的DNA结合特异性和亲和力,作为
纯化的蛋白质和来自细胞裂解物,在SNP-SNAP阵列上,并以人类基因组注释
转录因子结合因SNP引起的差异。验证染色质免疫沉淀的结果
前列腺癌细胞。
3。从前列腺癌患者那里获取SNP数据,并确定是否存在统计学意义
功能性SNP的关联,产生了前列腺癌特异性转录的差异结合
SNP-SNAP阵列的因素,前列腺癌发病率。
该技术可以同时分析数百万个SNP和多个转录因子,因此
代表以高通量方式评估SNP功能的第一个方法之一。我们的SNP-
SNAP技术,凭借阵列的自定义设计以及检查数百万个DNA排列的能力,
也广泛适用于任何癌症类型和疾病模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Szatkowski Ozers其他文献
Mary Szatkowski Ozers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Szatkowski Ozers', 18)}}的其他基金
Development of GenomeBuild as a Universal Method to Synthesize Genomes
GenomeBuild 的开发作为合成基因组的通用方法
- 批准号:
10565058 - 财政年份:2023
- 资助金额:
$ 14.47万 - 项目类别:
SNAP-X: Development of a Mutagenesis Strategy and High Density Protein Array to Comprehensively Display Protein Variants
SNAP-X:开发诱变策略和高密度蛋白质阵列以全面展示蛋白质变体
- 批准号:
9923621 - 财政年份:2019
- 资助金额:
$ 14.47万 - 项目类别:
SNAP-X: Development of a Mutagenesis Strategy and High Density Protein Array to Comprehensively Display Protein Variants
SNAP-X:开发诱变策略和高密度蛋白质阵列以全面展示蛋白质变体
- 批准号:
10203604 - 财政年份:2019
- 资助金额:
$ 14.47万 - 项目类别:
Aptamer-Based Detection of Cardiac Biomarker Glycosylation States Using APT-SNAP
使用 APT-SNAP 基于适体的心脏生物标志物糖基化状态检测
- 批准号:
8648358 - 财政年份:2014
- 资助金额:
$ 14.47万 - 项目类别:
Aptamer-Based Detection of Cardiac Biomarker Glycosylation States Using APT-SNAP
使用 APT-SNAP 基于适体的心脏生物标志物糖基化状态检测
- 批准号:
8914454 - 财政年份:2014
- 资助金额:
$ 14.47万 - 项目类别:
High Density Peptide Arrays for Cancer-Related Post-Translational Modifications
用于癌症相关翻译后修饰的高密度肽阵列
- 批准号:
8738628 - 财政年份:2013
- 资助金额:
$ 14.47万 - 项目类别:
High Density Peptide Arrays for Cancer-Related Post-Translational Modifications
用于癌症相关翻译后修饰的高密度肽阵列
- 批准号:
8625055 - 财政年份:2013
- 资助金额:
$ 14.47万 - 项目类别:
High Throughput Method to Assess SNP Functionality in Prostate Cancer
高通量方法评估前列腺癌中的 SNP 功能
- 批准号:
8222682 - 财政年份:2011
- 资助金额:
$ 14.47万 - 项目类别:
Screening of FoxA1-ER-DNA disruptors for development of breast cancer therapeutic
筛选 FoxA1-ER-DNA 干扰物用于开发乳腺癌治疗药物
- 批准号:
8200699 - 财政年份:2011
- 资助金额:
$ 14.47万 - 项目类别:
Screening of glucocorticoid receptor small-molecule regulators using cognate site
使用同源位点筛选糖皮质激素受体小分子调节剂
- 批准号:
7671718 - 财政年份:2009
- 资助金额:
$ 14.47万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
High Throughput Method to Assess SNP Functionality in Prostate Cancer
高通量方法评估前列腺癌中的 SNP 功能
- 批准号:
8222682 - 财政年份:2011
- 资助金额:
$ 14.47万 - 项目类别:
Enviromental Exposures, Host Factors and Human Disease
环境暴露、宿主因素和人类疾病
- 批准号:
8266299 - 财政年份:1997
- 资助金额:
$ 14.47万 - 项目类别:
Enviromental Exposures, Host Factors and Human Disease
环境暴露、宿主因素和人类疾病
- 批准号:
8451532 - 财政年份:1997
- 资助金额:
$ 14.47万 - 项目类别: