Chronic nicotine and synaptic transmission in brainstem respiratory neurons

脑干呼吸神经元的慢性尼古丁和突触传递

基本信息

  • 批准号:
    8371126
  • 负责人:
  • 金额:
    $ 31.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-10 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): At least 20% of pregnant women smoke, and their offspring have a higher than normal incidence of impaired cardiac function, autonomic nervous system disorders, sleep disorders, delayed speech and central and obstructive apneas. Importantly, recent studies document that the main respiratory phenotype in nicotine-exposed human neonates is a higher incidence of obstructive sleep apnea. It is widely accepted that obstructive apnea is caused largely by abnormal activation of tongue muscles, which are in turn controlled by hypoglossal motoneurons. Work in our laboratory beginning in 2003-2004 shows that in utero and early neonatal nicotine exposure (developmental nicotine exposure, DNE) leads to complex changes in breathing and hypoglossal motoneuron structure and function, including: a) desensitization of nAChRs; b) reduced excitatory synaptic input; c) increased input resistance, suggesting that the neurons are smaller; d) altered neuronal responses to inhibitory and excitatory agonists, including nicotine; e) altered ventilatory control in vivo, including increased apnea duration, with the entire apneic period associated with the loss of tongue muscle activity. Here we propose a series of studies designed to systematically examine the effects of DNE on both presynaptic and postsynaptic regulation of hypoglossal motoneuron function, motoneuron morphology, including estimates of the distribution of glutamatergic and GABAergic synapses upon motoneurons, and control of the tongue musculature in vivo. Specific Aim 1 tests the hypothesis that DNE reduces the release of both excitatory and inhibitory neurotransmitters from glutamatergic, GABAergic and glycinergic neurons in the vicinity of the hypoglossal motoneurons, using whole cell voltage clamp techniques. Aim 2 is designed to determine how DNE exaggerates the post-synaptic response of hypoglossal motoneurons to agonists of GABAA, glycine, NMDA and AMPA receptors. These post-synaptic effects will be evaluated by blocking presynaptic input to hypoglossal motoneurons, and studying postsynaptic effects by injecting small volumes of receptor agonists, while measuring changes in whole cell current and conductance under voltage clamp. Aim 3 tests the hypothesis that DNE disrupts the normal signals that regulate dendritic growth and synapse formation, leading to a reduction in the number of glutamatergic and GABAergic synapses formed upon the hypoglossal motoneurons. This hypothesis will be tested by filling motoneurons with dyes, and using 3-dimensional confocal microscopy to reconstruct the motoneuron cell body and dendritic tree, followed by detailed measures of somatic and dendritic anatomy. These data will be coupled with immunohistochemistry to examine the distribution of glutamatergic and GABAergic synapses that impinge upon the motoneurons, and how the number, position and density of these synapses change with DNE. Aim 4 examines the very real consequences of DNE by testing the hypothesis that DNE leads to an increased frequency and duration of obstructive, central and mixed apneas in vivo, due to reduced tongue muscle activation and diminished neuromuscular responses to changes in upper airway pressure. For these studies we will use lightly anesthetized neonatal rat pups wherein measurements of rib cage expansion and the EMG activity of inspiratory intercostal and tongue muscles are recorded. We will measure the frequency and duration of central, obstructive and mixed apneas, and the genioglossus EMG before, during and after each apneic episode. Reflex control of tongue muscles evoked by changing upper airway pressure will also be measured and quantified. All experiments will be done in neonatal rat pups exposed to either nicotine (experimental group) or saline (control group) in utero. These studies are clinically important because DNE in human infants is associated with an abnormally high incidence of breathing, feeding, swallowing and cardiovascular abnormalities that affects the health and well-being of millions of human infants in infancy and childhood. It is therefore crucial to begin establishing the mechanisms that lead to abnormal development of the brainstem neurons that regulate these critical homeostatic functions. PUBLIC HEALTH RELEVANCE: Our goal is to better understand how exposure to nicotine in utero and in the early neonatal period (Developmental Nicotine Exposure, DNE) alters development of nervous system structure and function in infants and young children, with specific focus on the hypoglossal motoneurons, which are critical for normal breathing, swallowing, sucking and chewing. Clinical studies have shown that DNE can lead to learning and memory problems, a greater rate of nicotine addiction, growth abnormalities, feeding and swallowing disorders, sleep abnormalities, and an increased risk of asthma, sudden infant death syndrome (SIDS) and both central and obstructive sleep apnea. Over the last several years, our laboratory has produced considerable evidence showing that DNE neonates exhibit a variety of abnormal anatomic and functional changes that adversely affect normal breathing control. We seek to understand the cellular mechanisms that cause these developmental changes. Here we propose a series of detailed experiments that will examine how DNE alters the structure and function of hypoglossal motor neurons, and correlate them with behavioral measures in neonatal rats studied in vivo. Hypoglossal motor neurons, located in the brainstem, control muscles of the tongue. Altered control of the tongue muscles is the major cause of breathing problems, including obstructive sleep apnea, as well as swallowing, sucking and chewing abnormalities. Moreover, because these neurons are large and readily accessible in slices of the neonatal rat brainstem, that produces a ventilatory rhythm; detailed in vitro studies of their structure and function are possible. We will determine how DNE influences the normal release of neurotransmitters onto the motoneurons; the function of inhibitory and excitatory neurotransmitter receptors on the neurons; the location and number of synapses; and the growth and development of dendrites. The in vivo experiments will allow us to determine how DNE influences the frequency and duration of central and obstructive apnea, and the reflex control of the tongue muscles. Techniques used include patch clamp electrophysiology of single hypoglossal motor neurons, immunohistochemistry, measures of neuron size and shape, and measures of tongue muscle activity and breathing in anesthetized neonatal rats. For all studies, neurons from DNE neonates will be compared to age-matched, saline-exposed control animals.
描述(申请人提供):至少20%的孕妇吸烟,其后代的心脏功能受损,自主神经系统疾病,睡眠障碍,言语延迟以及中央和阻塞性呼吸暂停的发生率高于正常情况。重要的是,最近的研究表明,暴露于尼古丁的人类新生儿的主要呼吸表型是阻塞性睡眠呼吸暂停的较高发生率。人们普遍认为,阻塞性呼吸暂停主要是由舌肌异常激活引起的,而舌头肌肉反过来又受到次闭体运动神经元的控制。从2003 - 2004年开始,我们的实验室工作表明,在子宫和新生儿尼古丁早期暴露(发育性尼古丁暴露,DNE)会导致呼吸和降低降低运动神经元的结构和功能的复杂变化,包括:a)NACHRS的脱敏化; b)减少兴奋性突触输入; c)增加输入抗性,表明神经元较小; d)改变了包括尼古丁在内的抑制性和兴奋性激动剂的神经元反应; e)体内的通气控制改变,包括呼吸暂停持续时间增加,整个呼吸暂停期与舌肌活动的丧失有关。在这里,我们提出了一系列研究,旨在系统地检查DNE对降临体运动神经元功能的突触前和突触后调节的影响,运动神经元的形态,包括对谷氨酸能和GABAergic突触分布的估计值,对运动神经元以及舌肌的控制。具体目标1检验了以下假设,该假说使用全体细胞电压夹式技术降低了降低了肾上腺运动神经元附近的谷氨酸能,GABA能和甘氨酸能神经元的兴奋性和抑制性神经递质的释放。 AIM 2旨在确定dne如何夸大了降临素运动神经元对Gabaa,Glycine,Glycine,NMDA和AMPA受体的激动剂的突触后反应。这些突触后的作用将通过阻止突触前输入到降压运动神经元,并通过注射少量受体激动剂来研究突触后作用,同时测量电压夹下整个细胞电流和电导率的变化。 AIM 3检验了以下假设,即DNE破坏了调节树突生长和突触形成的正常信号,从而导致在降低了舌膜神经元上形成的谷氨酸能和GABA能突触的数量减少。该假设将通过用染料填充运动神经元,并使用3维共焦显微镜重建运动神经元细胞体和树突状树,然后进行详细的体细胞和树突解剖学测量。这些数据将与免疫组织化学相结合,以检查影响运动神经元的谷氨酸能和GABA能突触的分布,以及这些突触的数量,位置和密度如何随DNE而变化。 AIM 4通过测试DNE导致舌,中央和混合呼吸暂停的频率和持续时间的假设,该假设在体内的频率和持续时间增加,从而研究了DNE的真正后果,这是由于舌肌的激活减少并减少了对上呼吸道压力变化的神经肌肉反应。在这些研究中,我们将使用轻微麻醉的新生大鼠幼崽,其中记录了肋骨笼膨胀的测量以及灵感界面和舌头肌肉的EMG活性。我们将在每个呼吸暂停发作之前,之后和之后测量中央,阻塞性和混合呼吸暂停的频率和持续时间,以及Genioglossus EMG。还将测量和量化通过不断变化的上气道压力引起的舌头肌肉的反射控制。所有实验将在暴露于尼古丁(实验组)或盐水(对照组)的新生大鼠幼崽中进行。这些研究在临床上很重要,因为人类婴儿中的DNE与呼吸,喂养,吞咽和心血管异常的异常高,这会影响婴儿期和童年时数百万人类婴儿的健康和福祉。因此,至关重要的是开始建立导致的机制 调节这些关键稳态功能的脑干神经元的异常发育。 公共卫生相关性:我们的目标是更好地了解子宫内和新生儿早期(发育性尼古丁暴露,dne)如何暴露于婴儿和幼儿中神经系统结构和功能的发展,并特别关注降低性运动神经元,这对于正常的呼吸,吞咽,吞咽,吸吮和咀嚼至关重要。临床研究表明,DNE可以导致学习和记忆问题,尼古丁成瘾,生长异常,喂养和吞咽障碍,睡眠异常以及哮喘哮喘,猝死综合征(SID)(SID)以及中枢和阻塞性睡眠呼吸暂停的风险增加。在过去的几年中,我们的实验室提供了大量证据,表明新生儿表现出各种异常的解剖和功能变化,从而不利地影响正常的呼吸控制。我们试图了解引起这些发育变化的细胞机制。在这里,我们提出了一系列详细的实验,这些实验将研究如何改变降压运动神经元的结构和功能,并将其与在体内研究的新生大鼠中的行为度量相关联。位于脑干中的低脑运动神经元控制舌头的肌肉。舌头肌肉的控制改变是呼吸问题的主要原因,包括阻塞性睡眠呼吸暂停以及吞咽,吮吸和咀嚼异常。此外,由于这些神经元很大并且可以在新生大鼠脑干的切片中易于访问,因此会产生通气节奏。可以详细介绍其结构和功能的体外研究。我们将确定DNE如何影响神经递质在运动神经元上的正常释放。抑制性和兴奋性神经递质受体在神经元上的功能;突触的位置和数量;以及树突的生长和发展。体内实验将使我们能够确定DNE如何影响中央和阻塞性呼吸暂停的频率和持续时间,以及舌肌的反射控制。所使用的技术包括单个降临体运动神经元的斑块夹电生理学,免疫组织化学,神经元大小和形状的测量以及舌肌活动的测量以及麻醉新生大鼠的呼吸。对于所有研究,将来自新生儿的神经元与年龄匹配的盐水暴露对照动物进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralph Frank Fregosi其他文献

Ralph Frank Fregosi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralph Frank Fregosi', 18)}}的其他基金

Functional and Structural Diversity in Hypoglossal Motoneurons
舌下运动神经元的功能和结构多样性
  • 批准号:
    10608440
  • 财政年份:
    2022
  • 资助金额:
    $ 31.19万
  • 项目类别:
Chronic nicotine and synaptic transmission in brainstem respiratory neurons
脑干呼吸神经元的慢性尼古丁和突触传递
  • 批准号:
    10401834
  • 财政年份:
    2012
  • 资助金额:
    $ 31.19万
  • 项目类别:
Chronic nicotine and synaptic transmission in brainstem respiratory neurons
脑干呼吸神经元的慢性尼古丁和突触传递
  • 批准号:
    8508277
  • 财政年份:
    2012
  • 资助金额:
    $ 31.19万
  • 项目类别:
Chronic nicotine and synaptic transmission in brainstem respiratory neurons
脑干呼吸神经元的慢性尼古丁和突触传递
  • 批准号:
    9919608
  • 财政年份:
    2012
  • 资助金额:
    $ 31.19万
  • 项目类别:
Chronic nicotine and synaptic transmission in brainstem respiratory neurons
脑干呼吸神经元的慢性尼古丁和突触传递
  • 批准号:
    8856286
  • 财政年份:
    2012
  • 资助金额:
    $ 31.19万
  • 项目类别:
Chronic nicotine and synaptic transmission in brainstem respiratory neurons
脑干呼吸神经元的慢性尼古丁和突触传递
  • 批准号:
    9058573
  • 财政年份:
    2012
  • 资助金额:
    $ 31.19万
  • 项目类别:
Neuromuscular control of the mammalian tongue
哺乳动物舌头的神经肌肉控制
  • 批准号:
    7332278
  • 财政年份:
    2007
  • 资助金额:
    $ 31.19万
  • 项目类别:
Neuromuscular control of the mammalian tongue
哺乳动物舌头的神经肌肉控制
  • 批准号:
    7751905
  • 财政年份:
    2007
  • 资助金额:
    $ 31.19万
  • 项目类别:
Neuromuscular control of the mammalian tongue
哺乳动物舌头的神经肌肉控制
  • 批准号:
    7197647
  • 财政年份:
    2007
  • 资助金额:
    $ 31.19万
  • 项目类别:
Neuromuscular control of the mammalian tongue
哺乳动物舌头的神经肌肉控制
  • 批准号:
    8011373
  • 财政年份:
    2007
  • 资助金额:
    $ 31.19万
  • 项目类别:

相似国自然基金

ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
  • 批准号:
    32300794
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SNX32棕榈酰化修饰调控AMPA受体介导的突触可塑性在AD中的作用机制
  • 批准号:
    32360219
  • 批准年份:
    2023
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
翻译水平选择性调控皮层AMPA受体表达促进神经元形态功能发育及神经环路塑造的分子机制及生理功能研究
  • 批准号:
    32360194
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
  • 批准号:
    82371524
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于奖赏环路内AMPA受体相关的突触可塑性变化探讨痫蛋白在抑郁症发病中的作用及机制
  • 批准号:
    82360277
  • 批准年份:
    2023
  • 资助金额:
    32.2 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

BLR&D Research Career Scientist Award
BLR
  • 批准号:
    10618251
  • 财政年份:
    2020
  • 资助金额:
    $ 31.19万
  • 项目类别:
BLR&D Research Career Scientist Award
BLR
  • 批准号:
    10451508
  • 财政年份:
    2020
  • 资助金额:
    $ 31.19万
  • 项目类别:
Antiglutamatergic Therapy to Protect the Immature Brain Against Nerve Agents
抗谷氨酸治疗可保护未成熟的大脑免受神经毒剂的侵害
  • 批准号:
    9769166
  • 财政年份:
    2018
  • 资助金额:
    $ 31.19万
  • 项目类别:
Relapse-suppressing brain mechanisms in alcoholism: role of the mPFC
酗酒中抑制复发的大脑机制:mPFC 的作用
  • 批准号:
    9031014
  • 财政年份:
    2015
  • 资助金额:
    $ 31.19万
  • 项目类别:
A Program for Innovative PET Radioligand Development and Application - A Translational Toolbox for Treatments for Mental Health
创新 PET 放射性配体开发和应用计划 - 心理健康治疗的转化工具箱
  • 批准号:
    10706569
  • 财政年份:
    2015
  • 资助金额:
    $ 31.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了