Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
基本信息
- 批准号:7624956
- 负责人:
- 金额:$ 20.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAlgorithmsArtsAthleticAutomobile DrivingBehaviorBiologicalBiomechanicsBrainBudgetsCalibrationClinicalCollaborationsCollectionComplexComputer softwareComputing MethodologiesDataData AnalysesDetectionDevelopmentDevicesDocumentationEatingElectric StimulationElectromagneticsEnsureEnvironmentEquilibriumExtensible Markup LanguageFeedbackFundingGenerationsGoalsGrantHourHumanHuman bodyImageryIndustryJointsLawsLeftLibrariesLimb structureLocationMeasurementMethodologyMethodsModalityModelingMotionMotorMovementMuscleOccupational SafetyOperative Surgical ProceduresOpticsOutputPerformancePositioning AttributeProductionProductivityPublishingReconstructive Surgical ProceduresRehabilitation therapyRelianceResearchResearch PersonnelRunningSensory ReceptorsSignal TransductionSimulateSkeletonSoftware ToolsSpecific qualifier valueStudentsSuggestionSystemTestingTimeTranslatingTreesUnited States National Institutes of HealthVariantWorkWritinganimationbaseclinical applicationcomputer human interactiondata modelingdata structuredesignengineering designexperiencegraphical user interfaceinterestkinematicsmeetingsmotor controlneural prosthesisneuroregulationrelating to nervous systemresearch and developmentsensorsimulationskeletalsoft tissuesoftware developmentsoundtoolusabilityvirtual
项目摘要
DESCRIPTION (provided by applicant): We propose to develop a toolbox for estimation, simulation and control of multi-joint movements. Our immediate goal is to facilitate research in Motor Control, by providing access to advanced computational methods and making such methods an integral part of the hypothesis generation-and-testing cycle. The estimation component of the toolbox will enable researchers to accurately compute multi-joint movement trajectories as well as limb sizes from motion capture data, without spending hours to place markers at precise locations and redesign setups to ensure that every marker is always visible. The control component will make it possible to formulate mathematically-sound hypotheses about the control strategies used by the brain, and automatically synthesize detailed control laws corresponding to the user's hypotheses. These control laws will then be applied to realistic musculo-skeletal models, using the simulation component, and the predicted behavior will be compared to experimental data in terms of kinematics, contact forces and EMGs. In case of a mismatch the toolbox will be able to netune any free parameters of the controller, and also search the library of candidate control strategies and identify the one which best agrees with the data. Our longer-term goal is to assist clinicians and engineers designing new treatments such as reconstructive surgery and functional electric stimulation. Testing candidate control mechanisms on simulated musculo-skeletal dynamics can greatly reduce the undesirable trial-and-error iterations. Customizations necessary for clinical use are left outside the scope of this project, however they will be possible once the core functionality is developed in a system with open design. The toolbox will be written in Matlab, with some C++ components, and will be freely available for academic, research and non-prot purposes. Project narrative We propose to develop a toolbox for estimation, simulation and control of multi-joint movement. Our immediate goal is to facilitate research in the eld of Motor Control by providing access to advanced computational methods presently beyond the reach of many investigators. While tools for simulating musculo-skeletal dynamics already exist, simulation alone is rarely suffcient to advance our understanding of motor function. Here we will combine simulation with automatic controllers capable of driving realistic musculo-skeletal models, and provide tools for estimating multi-joint movements from motion capture data. Our longer-term goal is to assist clinicians and engineers designing new treatments such as reconstructive surgery and functional electric stimulation.
描述(由申请人提供):我们建议开发一个用于估计、模拟和控制多关节运动的工具箱。我们的近期目标是通过提供先进的计算方法并使这些方法成为假设生成和测试周期的一个组成部分来促进电机控制的研究。该工具箱的估计组件将使研究人员能够根据运动捕捉数据准确计算多关节运动轨迹以及肢体尺寸,而无需花费数小时将标记放置在精确位置并重新设计设置以确保每个标记始终可见。控制组件将能够对大脑使用的控制策略制定数学上合理的假设,并自动合成与用户假设相对应的详细控制法则。然后,这些控制定律将使用模拟组件应用于现实的肌肉骨骼模型,并将预测的行为与运动学、接触力和肌电图方面的实验数据进行比较。如果不匹配,工具箱将能够对控制器的任何自由参数进行网络调整,并且还搜索候选控制策略库并识别与数据最相符的策略。我们的长期目标是协助临床医生和工程师设计新的治疗方法,例如重建手术和功能性电刺激。在模拟肌肉骨骼动力学上测试候选控制机制可以大大减少不需要的试错迭代。临床使用所需的定制不属于该项目的范围,但是一旦在开放式设计的系统中开发了核心功能,这些定制就成为可能。该工具箱将用 Matlab 编写,并带有一些 C++ 组件,并将免费用于学术、研究和非盈利目的。项目叙述我们建议开发一个用于估计、模拟和控制多关节运动的工具箱。我们的近期目标是通过提供目前许多研究人员无法企及的先进计算方法来促进电机控制领域的研究。虽然模拟肌肉骨骼动力学的工具已经存在,但仅靠模拟很少足以增进我们对运动功能的理解。在这里,我们将模拟与能够驱动真实肌肉骨骼模型的自动控制器相结合,并提供根据运动捕捉数据估计多关节运动的工具。我们的长期目标是协助临床医生和工程师设计新的治疗方法,例如重建手术和功能性电刺激。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emanuel Todorov其他文献
Emanuel Todorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emanuel Todorov', 18)}}的其他基金
Using a humanoid robot to understand and repair sensorimotor control
使用人形机器人理解和修复感觉运动控制
- 批准号:
7794526 - 财政年份:2010
- 资助金额:
$ 20.48万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8089310 - 财政年份:2010
- 资助金额:
$ 20.48万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8288148 - 财政年份:2010
- 资助金额:
$ 20.48万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8055745 - 财政年份:2010
- 资助金额:
$ 20.48万 - 项目类别:
CRCNS: Hybrid non-invasive brain-machine interfaces for 3D object manipulation
CRCNS:用于 3D 对象操作的混合非侵入性脑机接口
- 批准号:
8507287 - 财政年份:2010
- 资助金额:
$ 20.48万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7901879 - 财政年份:2008
- 资助金额:
$ 20.48万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
8063468 - 财政年份:2008
- 资助金额:
$ 20.48万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7466718 - 财政年份:2008
- 资助金额:
$ 20.48万 - 项目类别:
Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
- 批准号:
7512485 - 财政年份:2008
- 资助金额:
$ 20.48万 - 项目类别:
Optimal feedback control of goal-directed arm movements
目标导向手臂运动的最佳反馈控制
- 批准号:
7795668 - 财政年份:2008
- 资助金额:
$ 20.48万 - 项目类别:
相似国自然基金
基于大数据挖掘与深度学习的中国书法仿写与智能创作的算法研究
- 批准号:61876150
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
艺术作品视觉美学感知特征分析及图像美感效果增强算法研究
- 批准号:61602313
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于笔画构建的中国书画艺术的数字化仿真算法研究
- 批准号:61602190
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
中国画的计算机分析与分类算法研究
- 批准号:61502331
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
沙画艺术的数据场图像分析与演化关键算法研究
- 批准号:61402399
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Methods for Localizing Dynamic Brain Activity and Epileptogenic Zones
定位动态大脑活动和癫痫发生区的贝叶斯方法
- 批准号:
7751495 - 财政年份:2010
- 资助金额:
$ 20.48万 - 项目类别:
Toolbox for estimation, simulation and control of multi-joint movements
用于估计、模拟和控制多关节运动的工具箱
- 批准号:
7512485 - 财政年份:2008
- 资助金额:
$ 20.48万 - 项目类别:
Development and Dissemination of Robust Brain MRI Measurement Tools
强大的脑 MRI 测量工具的开发和传播
- 批准号:
7556497 - 财政年份:2008
- 资助金额:
$ 20.48万 - 项目类别:
Scalable tools for the analysis of chemical compounds using graph-based querying
使用基于图形的查询分析化合物的可扩展工具
- 批准号:
7539247 - 财政年份:2007
- 资助金额:
$ 20.48万 - 项目类别:
Scalable tools for the analysis of chemical compounds using graph-based querying
使用基于图形的查询分析化合物的可扩展工具
- 批准号:
7686067 - 财政年份:2007
- 资助金额:
$ 20.48万 - 项目类别: