Development of Software for Automated Quantification of Brain MR Images
脑 MR 图像自动量化软件的开发
基本信息
- 批准号:8313127
- 负责人:
- 金额:$ 13.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2013-12-28
- 项目状态:已结题
- 来源:
- 关键词:4 year oldAgeAtlasesAtrophicAutomationBasal GangliaBrainBrain DiseasesChildhoodClinicalClinical DataCommunitiesComputer softwareDataData SetDatabasesDementiaDependencyDiagnosisElderlyFDA approvedFutureGoalsGoldGrantImageLocationMagnetic Resonance ImagingManualsMapsMeasuresMedical ImagingModalityMorusNeuroanatomyNeurologyNoiseNormal RangePatient CarePatientsPhaseRadiology SpecialtyReportingResearchResearch DesignScanningStructureTechnologyTestingTextTimeTrainingUniversitiesWeightbaseclinical Diagnosisclinical applicationdesignflexibilityfunctional outcomesgray matterindexinginterestneuroimagingphase 2 studyplatform-independentprogramssoftware developmenttoolwhite matteryoung adult
项目摘要
DESCRIPTION (provided by applicant): The overall goal of this application is to develop an automated and quantitative analysis tool for brain MR images. The technology is based on the MriStudio program developed by Drs. Mori and Miller, which is characterized by accurate multi-modal diffeomorphic mapping and deformable atlases with extensive anatomical definitions of gray and white matter structures. The program has been extensively tested for accuracy in normal and various patient groups. This Phase I grant will support the integration of existing programs into an automated pipeline and generate data for FDA approval. Currently, daily radiological diagnosis of MRI is almost exclusively based on qualitative examination. However, the availability of quantitative analysis results, such as volumes of various brain structures, would provide a variety of benefits for clinical diagnosis and subsequent patient care. If quantitative reporting of anatomical status were available, it could be readily compared with results from normals to estimate the degree of abnormalities. Compared to the current free-text format, quantitative reporting could be correlated with clinical functions more easily. Quantitativ data could be stored as a part of clinical database (PACS), which is fully searchable, and, thus, past cases with similar anatomical status could be readily retrieved and the functional outcomes and final diagnosis in past cases could be used to enrich current diagnosis. If serial scans were available, longitudinal changes could also be appreciated readily. Our specific aims are; Aim 1: Build a pipeline for full automation and test the parcellation accuracy the newly designed tools will be based on the MriStudio platform (www.mristudio.org). This software is designed for research use, with full access to parameters and results at each analysis step. We need to convert it to a fully automated pipeline in a platform-independent manner. This new pipeline then must be rigorously tested for accuracy Dr. Mori's lab has 30 training image datasets with full manual segmentation for 12 basal ganglia and 16 core white matter structures. We will use these datasets to test the accuracy of the automated segmentation. Aim 2: Apply the pipeline to normal data and establish normal ranges of values for each age we will use the pediatric, young adult, and elderly normal databases in Dr. Mori's lab to establish normal values and the degree of anatomical variability at each age. We will quantify volumes, T2 intensity, and DTI- derived indices for each parcellated structure. The age-dependency of the quantified values and confidence levels will be characterized. This data will provide information about the statistical power to detect abnormalities. The database contains variability in imaging parameters, the impact of which on the measured values will be characterized. This information, as well as the existing clinical data for various brain diseases, will be used to evaluate the efficacy of the proposed tool in the Phase II study and in the future FDA application.
PUBLIC HEALTH RELEVANCE: We will develop software for automated analysis of brain MR images. This software provides quantitative assessment of brain anatomical status of various brain disease patients.
描述(由申请人提供):此应用程序的总体目标是为大脑MR图像开发自动化和定量分析工具。该技术基于DRS开发的MRISTUDIO计划。 Mori和Miller的特征是准确的多模式差异映射和可变形的地图集,具有广泛的灰质和白质结构的解剖学定义。该程序已在正常和各种患者组中进行了广泛的测试。此阶段I赠款将支持将现有程序集成到自动管道中,并生成数据以供FDA批准。目前,MRI的每日放射学诊断几乎完全基于定性检查。但是,定量分析结果的可用性,例如各种大脑结构的体积,将为临床诊断和随后的患者护理提供多种益处。如果可以使用解剖状态的定量报告,则可以很容易地将其与正常的结果相比,以估计异常程度。与当前的自由文本格式相比,定量报告可以更容易与临床功能相关。可以将定量数据作为临床数据库(PAC)的一部分存储,该数据库是完全可搜索的,因此,可以很容易地检索具有相似解剖状态的过去病例,并且可以使用过去病例的功能结果和最终诊断来富集当前的诊断。如果有连续扫描,纵向变化也可以很容易地理解。我们的具体目标是; AIM 1:构建完整自动化的管道,并测试新设计的工具将基于MRISTUDIO平台(www.mristudio.org)。该软件设计用于研究使用,并在每个分析步骤中完全访问参数和结果。我们需要以独立于平台的方式将其转换为完全自动化的管道。然后,必须严格测试这条新管道,以确保Mori博士的实验室具有30个培训图像数据集,其中包含12个基底神经节和16个核心白质结构的完整手动分割。我们将使用这些数据集测试自动分割的准确性。 AIM 2:将管道应用于正常数据,并为每个年龄段建立正常的值范围,我们将使用Mori博士实验室中的儿科,年轻和老年正常数据库来建立正常值和每个年龄段的解剖学变异性程度。我们将为每个分割结构量化体积,T2强度和二级指数。量化值和置信度水平的年龄依赖性将被表征。该数据将提供有关检测异常的统计能力的信息。该数据库包含成像参数的可变性,将表征其对测量值的影响。这些信息以及各种脑部疾病的现有临床数据将用于评估II期研究和将来的FDA应用中所提出的工具的功效。
公共卫生相关性:我们将开发用于大脑MR图像自动分析的软件。该软件提供了各种脑部疾病患者大脑解剖状态的定量评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
hangyi jiang其他文献
hangyi jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('hangyi jiang', 18)}}的其他基金
Development of Electronic Multi-Scale Atlas of Human Brain for iPad
iPad 版人脑电子多尺度图谱的开发
- 批准号:
8449765 - 财政年份:2013
- 资助金额:
$ 13.36万 - 项目类别:
Development of Software for Automated Quantification of Brain MR Images
脑 MR 图像自动量化软件的开发
- 批准号:
8934185 - 财政年份:2012
- 资助金额:
$ 13.36万 - 项目类别:
Development of 3D electronic atlases of deveoping mouse brains
开发小鼠大脑发育的 3D 电子图谱
- 批准号:
8248494 - 财政年份:2012
- 资助金额:
$ 13.36万 - 项目类别:
Development of Software for Automated Quantification of Brain MR Images
脑 MR 图像自动量化软件的开发
- 批准号:
8832164 - 财政年份:2012
- 资助金额:
$ 13.36万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Volume-based Analysis of 6-month Infant Brain MRI for Autism Biomarker Identification and Early Diagnosis
用于自闭症生物标志物识别和早期诊断的 6 个月婴儿脑部 MRI 体积分析
- 批准号:
9243470 - 财政年份:2017
- 资助金额:
$ 13.36万 - 项目类别:
UNDERSTANDING NEUROBEHAVIORAL DEFICITS IN PRETERM INFANTS THROUGH IMAGING
通过影像学了解早产儿的神经行为缺陷
- 批准号:
7935130 - 财政年份:2009
- 资助金额:
$ 13.36万 - 项目类别:
UNDERSTANDING NEUROBEHAVIORAL DEFICITS IN PRETERM INFANTS THROUGH IMAGING
通过影像学了解早产儿的神经行为缺陷
- 批准号:
7795134 - 财政年份:2008
- 资助金额:
$ 13.36万 - 项目类别:
UNDERSTANDING NEUROBEHAVIORAL DEFICITS IN PRETERM INFANTS THROUGH IMAGING
通过影像学了解早产儿的神经行为缺陷
- 批准号:
8078021 - 财政年份:2008
- 资助金额:
$ 13.36万 - 项目类别:
UNDERSTANDING NEUROBEHAVIORAL DEFICITS IN PRETERM INFANTS THROUGH IMAGING
通过影像学了解早产儿的神经行为缺陷
- 批准号:
8245159 - 财政年份:2008
- 资助金额:
$ 13.36万 - 项目类别: