DETERMINING THE STRUCTURE, FUNCTION AND REGULATION OF DYNEIN AND FLAGELLA
确定动力蛋白和鞭毛的结构、功能和调节
基本信息
- 批准号:8171279
- 负责人:
- 金额:$ 0.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AttenuatedBiologicalCaliberCell ShapeCell divisionCellsChemicalsChronicCiliaComputer Retrieval of Information on Scientific Projects DatabaseCytoplasmCytoskeletonDefectDevelopmentDiseaseDynein ATPaseEnvironmentEnzymesEventFlagellaFoundationsFreezingFundingFutureGeneticGoalsGrantHumanImaging TechniquesImaging technologyIn SituInstitutionKnowledgeLinkLung diseasesMale SterilityMalignant NeoplasmsMechanicsMediatingMicrotubule-Associated ProteinsMicrotubulesMolecularMotorObesityOrganOrganellesPolycystic Kidney DiseasesPrimary Ciliary DyskinesiasProcessProteinsProtocols documentationRegulationResearchResearch PersonnelResourcesSourceSpecimenStructureTechnologyThree-Dimensional ImagingUnited States National Institutes of HealthWorkbasecell behaviorcell motilitydriving forceelectron tomographyhuman diseaseimage processinginnovationinsightprotein complexresearch studyretrograde transporttherapeutic developmenttool
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Dyneins are microtubule-based motor enzymes that convert chemical energy into mechanical work. The dynein motors occur either in the cytoplasm, where they mediate retrograde transport, or within the integral structure of cilia and flagella, where they generate the forces that drive these motile organelles. While progress has been made in understanding aspects of dynein's function, the complexity and size of this motor enzyme have made it difficult to elucidate its molecular mechanism. Electron tomography of rapidly frozen specimens has been shown to be an exciting new technique for imaging well-preserved biological structures in an unperturbed cellular environment. Axonemes are excellent specimens for cryo-electron tomography and for the study of dynein in situ, thanks to the small diameter and the highly ordered arrangement of the microtubules and associated protein complexes in this organelle. We are using the cutting-edge technology of cryo-electron tomography to study the three-dimensional ultrastructures of dynein and intact flagella both preserved in their native states. Our approaches use modern and innovative tools, including integrated genetic and structural approaches that allow us to overcome current limitations in imaging technology and to directly visualize gene products in cells. Our work is aimed at contributing fundamental knowledge to our understanding of the mechanisms underlying motor function and control on a molecular level and to our understanding of the functional organization of cells in general. A major benefit of the proposed experiments will be the development of new tools for 3D imaging and image processing, which in the future will provide insights into cellular events including those gone amiss as in major diseases.
In humans the normal function of several organs requires the activity of cilia. Defects in the motility and assembly of cilia and flagella have been linked to important human diseases, such as primary ciliary dyskinesia (PCD), polycystic kidney disease (PKD), chronic respiratory disease, male sterility, and human obesity disorders (reviewed by Snell et al., 2004). In addition dynein-driven transport along the microtubule cytoskeleton has major impact on cell behavior and organization, including cell division, signaling and cell shape; defects in this organization are often hallmarks of cancer. We expect that the proposed project will lay the foundation for our long-term goal to understand the mechanisms of ciliary-linked disorders in humans, a prerequisite to the development of therapeutic protocols capable of attenuating these disease processes.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。子项目及
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以在其他 CRISP 条目中表示。列出的机构是
对于中心来说,它不一定是研究者的机构。
动力蛋白是基于微管的运动酶,可将化学能转化为机械能。动力蛋白马达要么发生在细胞质中,在那里它们介导逆行运输,要么发生在纤毛和鞭毛的整体结构中,在那里它们产生驱动这些运动细胞器的力。虽然在理解动力蛋白功能方面取得了进展,但这种运动酶的复杂性和大小使得阐明其分子机制变得困难。快速冷冻标本的电子断层扫描已被证明是一种令人兴奋的新技术,可在未受干扰的细胞环境中对保存完好的生物结构进行成像。轴丝是冷冻电子断层扫描和原位动力蛋白研究的优秀标本,这要归功于该细胞器中微管和相关蛋白质复合物的小直径和高度有序的排列。我们正在利用冷冻电子断层扫描的尖端技术来研究保存在原始状态的动力蛋白和完整鞭毛的三维超微结构。我们的方法使用现代和创新的工具,包括集成的遗传和结构方法,使我们能够克服当前成像技术的限制并直接可视化细胞中的基因产物。我们的工作旨在为我们理解分子水平上运动功能和控制的机制以及我们对细胞功能组织的总体理解提供基础知识。所提出的实验的一个主要好处是开发用于 3D 成像和图像处理的新工具,这些工具在未来将提供对细胞事件的见解,包括那些在重大疾病中出现问题的事件。
在人类中,多个器官的正常功能需要纤毛的活动。纤毛和鞭毛的运动和组装缺陷与重要的人类疾病有关,例如原发性纤毛运动障碍(PCD)、多囊肾病(PKD)、慢性呼吸道疾病、男性不育症和人类肥胖症(由 Snell 等人综述)等,2004)。此外,动力蛋白驱动的沿微管细胞骨架的运输对细胞行为和组织有重大影响,包括细胞分裂、信号传导和细胞形状;该组织的缺陷通常是癌症的标志。我们期望拟议的项目将为我们了解人类纤毛相关疾病机制的长期目标奠定基础,这是开发能够减轻这些疾病过程的治疗方案的先决条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIELA NICASTRO其他文献
DANIELA NICASTRO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIELA NICASTRO', 18)}}的其他基金
COMPONENTS OF THE DYNEIN REGULATORY COMPLEX IN CHLAMYDOMONAS FLAGELLA
鞭毛衣藻中动力蛋白调节复合体的组成部分
- 批准号:
8170934 - 财政年份:2010
- 资助金额:
$ 0.24万 - 项目类别:
COMPONENTS OF THE DYNEIN REGULATORY COMPLEX IN CHLAMYDOMONAS FLAGELLA
鞭毛衣藻中动力蛋白调节复合体的组成部分
- 批准号:
7955977 - 财政年份:2009
- 资助金额:
$ 0.24万 - 项目类别:
VISUALIZING THE MACROMOLECULAR ORGANIZATION OF THYLACOID MEMBRANES USING CRYO-ET
使用 Cryo-ET 可视化类囊膜的大分子组织
- 批准号:
7354994 - 财政年份:2006
- 资助金额:
$ 0.24万 - 项目类别:
CHARACTERISATION OF ISOLATED SPOMBE KINESIN-LIKE PROTEIN KLP6P USING CRYO EM
使用冷冻电镜表征分离的孢子驱动蛋白样蛋白 KLP6P
- 批准号:
7355010 - 财政年份:2006
- 资助金额:
$ 0.24万 - 项目类别:
CRYOET OF WT & MUTANT FLAGELLA OF CHLAMYDOMONAS ALLOWS MAPPING OF IDA SUBUNITS
WT 的秘密
- 批准号:
7355011 - 财政年份:2006
- 资助金额:
$ 0.24万 - 项目类别:
A LIQUID NITROGEN-COOLED LIGHT MICROSCOPE STAGE TO SCREEN SAMPLES FOR CRYOEM
用于筛选 CRYOEM 样品的液氮冷却光学显微镜台
- 批准号:
7355012 - 财政年份:2006
- 资助金额:
$ 0.24万 - 项目类别:
3D STRUCTURE OF TINY BACTERIUM SAR11 STUDIED BY CRYO-ELECTRON TOMOGRAPHY
通过低温电子断层扫描技术研究微小细菌 SAR11 的 3D 结构
- 批准号:
7354995 - 财政年份:2006
- 资助金额:
$ 0.24万 - 项目类别:
3D STRUCTURE OF ACTIVATED AXONEMES STUDIED BY CRYO-ELECTRON TOMOGRAPHY
通过低温电子断层扫描研究激活轴丝的 3D 结构
- 批准号:
7354993 - 财政年份:2006
- 资助金额:
$ 0.24万 - 项目类别:
CHARACTERISATION OF ISOLATED SPOMBE KINESIN-LIKE PROTEIN KLP6P USING CRYO EM
使用冷冻电镜表征分离的孢子驱动蛋白样蛋白 KLP6P
- 批准号:
7179908 - 财政年份:2005
- 资助金额:
$ 0.24万 - 项目类别:
3D STRUCT OF GREEN SULFUR BACTERIUM CHLOROBIUM TEPIDUM STUDIED BY CRYO-ET
Cryo-ET 研究绿硫细菌温氏氯菌的 3D 结构
- 批准号:
7179910 - 财政年份:2005
- 资助金额:
$ 0.24万 - 项目类别:
相似国自然基金
基于在体生物正交反应下调SOCS3水平构建抗血栓小口径组织工程血管的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
功能型生物可降解聚氨酯小口径人工血管的构建及促原位再生修复血管损伤的效果和机制
- 批准号:81902186
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于纳米纤维素生物活性墨水的3D打印制作小口径血管及结构性能研究
- 批准号:21704079
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
负载多种生物活性因子的纳米颗粒修饰异种小血管提高其抗血栓及内皮化性能研究
- 批准号:81771991
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
结合活细胞的3D打印构建生物活性小口径人工血管
- 批准号:31700845
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Relationship Between Indoor Ultrafine Particle Exposure and Respiratory Morbidity, Inflammation, and Oxidative Stress in Children with Asthma
室内超细颗粒物暴露与哮喘儿童呼吸系统发病率、炎症和氧化应激之间的关系
- 批准号:
10470611 - 财政年份:2022
- 资助金额:
$ 0.24万 - 项目类别:
A multipronged investigation of SARS-CoV-2 genome packaging
SARS-CoV-2 基因组包装的多管齐下研究
- 批准号:
10444410 - 财政年份:2022
- 资助金额:
$ 0.24万 - 项目类别:
Nanoparticle-mediated targeting of hepatic macrophages to mitigate inflammation in alcoholic liver disease
纳米颗粒介导的肝巨噬细胞靶向减轻酒精性肝病炎症
- 批准号:
10352578 - 财政年份:2022
- 资助金额:
$ 0.24万 - 项目类别:
Endothelial Function in Response to Topographical Micropatterning
内皮功能对地形微图案的反应
- 批准号:
10535346 - 财政年份:2022
- 资助金额:
$ 0.24万 - 项目类别:
Cryogenic High-throughput Cellular Imaging System
低温高通量细胞成像系统
- 批准号:
10545696 - 财政年份:2022
- 资助金额:
$ 0.24万 - 项目类别: