Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
基本信息
- 批准号:8103985
- 负责人:
- 金额:$ 12.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAcuteAddressAdmission activityAdoptionAgeAlgorithmsAmerican Heart AssociationAreaArea Under CurveAutomated External DefibrillatorBlood CirculationBypassCardiac DeathCardiopulmonary ResuscitationCardiovascular systemCessation of lifeChronicClinicalCritical CareDataDeteriorationDevelopmentEarly treatmentEmergency SituationEquilibriumEtiologyEvaluationEventFailureFloorGoalsHealthHeart ArrestHospitalsHourImProvInpatientsInstructionIntensive CareIntensive Care UnitsInterventionJoint Commission on Accreditation of Healthcare OrganizationsJointsJudgmentLength of StayLifeLiteratureMeasuresMedicalModelingMonitorNatureNeonatalObservational StudyOutcomePatientsPerformancePharmaceutical PreparationsPhysiciansPhysiologicalPhysiologyPolicy MakerPrincipal InvestigatorProbabilityPublic HealthRandomizedRandomized Controlled Clinical TrialsReceiver Operator CharacteristicsRegistriesResearch PersonnelResourcesResuscitationRiskS-nitro-N-acetylpenicillamineSCAP2 geneSamplingSensitivity and SpecificitySepsis SyndromeSigns and SymptomsSolutionsStagingSurvival RateSystemTestingTherapeutic InterventionTimeUnited StatesUnited States National Institutes of HealthVentricular FibrillationVentricular TachycardiaWorkabstractingarmbasecostdesignhelp-seeking behaviorhigh riskimprovedinstrumentmortalityoutcome forecastoutreachpatient safetypredictive modelingpreferencepreventprogramsprospectiveresponseroutine carestandard caretool
项目摘要
DESCRIPTION (provided by applicant): In-hospital cardiac arrest (IHCA) is a significant public health concern, afflicting an estimated 370,000- 750,000 patients annually, with survival rates generally below 20%. Over half of these patients are known to display signs of clinical deterioration in the hours leading up to the arrest. Rapid Response Systems (RRSs), designed to respond to patients in the early stages of clinical deterioration, have been surprisingly underwhelming with regards to preventing IHCA and death, leading some policy makers and researchers to suggest failures to identify the signs of early clinical deterioration or to call for help as possible etiologies. One possible solution to this problem is the development of a risk prediction tool that could be used to accurately stratify patients based on their likelihood of impending IHCA or ICU transfer, allowing interventions to be targeted at high risk patients. Several physiology-based scoring systems, which assign point values to abnormal vital signs, have been proposed but their mediocre predictive ability and cumbersome nature have limited their adoption. We have developed a simple, single question, quantitative scale of clinical judgment regarding patient stability that predicts IHCA or ICU transfer within the next 24 hours. We propose to validate that tool in a larger sample of patients and compare it to two physiology-based prediction algorithms, in an attempt to find the most sensitive and specific predictor of impending clinical deterioration. We will then use the best of the three, or a combined measure if better, in order to identify high-risk non-ICU inpatients and target them for a RRS intervention that bypasses the need to identify deteriorating patients and call for help, thereby allowing a targeted assessment of the RRS in high risk patients. RELEVANCE (See instructions): Some cardiac arrests in the hospital may be preventable if the clinical warning signs can be identified and acted upon quickly. Since it is not practical to monitor every hospitalized patient at all times, strategies to determine which patients are at high risk would allow additional resources to be targeted specifically at those patients. (End of Abstract)
描述(由申请人提供):院内心脏骤停(IHCA)是一个重大的公共卫生问题,每年遭受估计370,000-750,000名患者的折磨,生存率通常低于20%。众所周知,这些患者中有一半在被捕之前显示出临床恶化的迹象。快速反应系统(RRSS)旨在在临床恶化的早期阶段对患者做出反应,在防止IHCA和死亡方面令人惊讶的是,令人惊讶的是,导致一些政策制定者和研究人员提出未能确定早期临床下降或寻求帮助的迹象。解决此问题的一种可能解决方案是开发风险预测工具,该工具可根据患者即将来临的IHCA或ICU转移的可能性来准确地对其进行分层,从而可以针对高风险患者的干预措施。已经提出了几种基于生理的评分系统,它们为异常生命体征分配了点值,但是它们的中等预测能力和繁琐的性质限制了其采用。我们已经开发了一个简单的,单一的问题,定量的临床判断量表,这些临床判断,以预测未来24小时内IHCA或ICU转移。我们建议在较大的患者样本中验证该工具,并将其与两种基于生理的预测算法进行比较,以尝试找到即将临床的临床恶化的最敏感和最特定的预测指标。然后,我们将使用这三个中的最好的方法,或者如果更好的话,以确定高风险的非ICU住院患者并将其定位为RRS干预措施,以绕过需要识别恶劣患者并寻求帮助的需求,从而允许对高风险患者的RRS进行针对性评估。相关性(请参阅说明):如果可以迅速识别并采取临床警告标志,则可以预防医院中的一些心脏骤停。由于始终监测每个住院的患者是不切实际的,因此确定哪些患者处于高风险的策略将允许专门针对这些患者的其他资源。 (抽象的结尾)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dana Peres Edelson其他文献
Dana Peres Edelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dana Peres Edelson', 18)}}的其他基金
Opening The Black Box: Enhancing Machine Learning Interpretability To Optimize Clinical Response To Sudden Deterioration In COVID-19 Patients
打开黑匣子:增强机器学习的可解释性,以优化对 COVID-19 患者突然恶化的临床反应
- 批准号:
10259197 - 财政年份:2021
- 资助金额:
$ 12.96万 - 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
- 批准号:
8290431 - 财政年份:2009
- 资助金额:
$ 12.96万 - 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
- 批准号:
7923859 - 财政年份:2009
- 资助金额:
$ 12.96万 - 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
- 批准号:
7713699 - 财政年份:2009
- 资助金额:
$ 12.96万 - 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
- 批准号:
8505021 - 财政年份:2009
- 资助金额:
$ 12.96万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Targeting HNF4-induced thrombo-inflammation in Chagas disease
针对恰加斯病中 HNF4 诱导的血栓炎症
- 批准号:
10727268 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Phosphatidylserine-blocking nanoparticles as improved anti-thrombotic with reduced bleeding risk
磷脂酰丝氨酸阻断纳米颗粒可改善抗血栓形成并降低出血风险
- 批准号:
10598788 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Therapeutic agents to prevent developmental neuroimpairment after placental hormone loss
预防胎盘激素丢失后发育性神经损伤的治疗药物
- 批准号:
10700989 - 财政年份:2022
- 资助金额:
$ 12.96万 - 项目类别:
A novel cilium-to-nucleus axis promotes cellular senescence
一种新的纤毛到细胞核轴促进细胞衰老
- 批准号:
10414471 - 财政年份:2022
- 资助金额:
$ 12.96万 - 项目类别:
FrostBite-DMR - A new Drug-Free Approach for Treating Type 2 Diabetes Supplemental Request
FrostBite-DMR - 一种治疗 2 型糖尿病的新无药方法补充请求
- 批准号:
10748325 - 财政年份:2022
- 资助金额:
$ 12.96万 - 项目类别: