Hybrid Synthetic and Biologic Shear Thinning Hydrogels for Diabetic Wound Healing
用于糖尿病伤口愈合的混合合成和生物剪切稀化水凝胶
基本信息
- 批准号:10668940
- 负责人:
- 金额:$ 47.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcrylamidesAdamantaneAdmission activityAmputationAntioxidantsAutomobile DrivingBehaviorBiocompatible MaterialsBiologicalBiomechanicsBiomedical EngineeringBody TemperatureCellsCessation of lifeChemistryChronicClinicalComplexCyclodextrinsDataDefectDevicesDiabetes MellitusDiabetic Foot UlcerDrug ModelingsEconomic BurdenEncapsulatedEnvironmentEnzymesExcisionExtracellular MatrixFailureFibroblastsFormulationGelGoalsGranulation TissueGrowth FactorHealth Care CostsHealthcare SystemsHospitalsHyaluronic AcidHybridsHydrogelsHydrophobicityImageImmuneImmune responseImpairmentIn VitroIncidenceInflammationInjectableInjectionsIschemiaIslets of LangerhansKineticsLeadLengthLeptin deficiencyLongevityMaintenanceMeasuresMechanicsMediatingModificationModulusMolecular WeightMorbidity - disease rateMusN-isopropylacrylamideNon-Insulin-Dependent Diabetes MellitusNucleosome Core ParticleOrganoidsOutcomeOxidative StressPeptide HydrolasesPharmaceutical PreparationsPhenotypePhysiologicalPolymersPoriferaPropertyRattusReactionReactive Oxygen SpeciesSeriesSiteSourceSterile coveringsStructureSulfidesSurfaceSyringesSystemTechnologyTemperatureTestingTherapeuticThinnessTissuesVariantWaterWorkWound modelsaging populationangiogenesisbeta-Cyclodextrinsbiomaterial compatibilityclinical efficacycytokinecytotoxicdensitydesigndiabeticdiabetic patientdiabetic ulcerdiabetic wound healingdrug release profileexperiencehealinghydrophilicityin vivoinhibitorlead candidatelimb amputationmechanical propertiesmesenchymal stromal cellmouse modelmultidisciplinarynanoparticlenext generationnile redpolycaprolactonepropylenerepairedresponsescaffoldskin woundsmall moleculestem cellssuccesstherapeutic evaluationtranscription factorwoundwound carewound closurewound healing
项目摘要
PROJECT SUMMARY:
Nonhealing skin wounds are a major source of morbidity worldwide and becoming more of a burden due to
an increase in health care costs, an aging population, and growing incidence of diabetes. Non-healing skin
wounds occur in nearly 25% of diabetic patients, and ~6% are admitted to the hospital for wound-related
treatment, which if not successful, can lead to limb amputation or death. While more advanced treatments are
needed, cutting edge, multi-component technologies such as hydrogels or scaffolds loaded either with cells
and/or drugs have not achieved clinical impact. Failure of new candidate treatments is often due to poor tissue
integration, insufficient drug release profiles, and loss of biological (cell or growth factor) activity upon delivery
into a hostile wound microenvironment characterized by high concentrations of cytokines, proteases, and
cytotoxic reactive oxygen species (ROS).
The overall goal of the current project is to develop and apply a next generation, shear-thinning, and ROS
scavenging hydrogel that comprises a hybrid of ROS responsive nanoparticles (NPs) and hyaluronic acid (HA),
a natural extracellular matrix component. The shear thinning hydrogel mechanical properties will be achieved
through guest-host chemistry based on adamantane (AD) and beta-cyclodextrin (CD), which form reversible,
mechanically-stabilizing inclusion complexes. NPs will be surface functionalized with AD, and HA polymers will
be modified with CD; when these two components are mixed, they form shear-thinning solutions that rapidly self-
heal to form stable hydrogels within the tissue defect. The HA component is included because of its precedent
for efficacious use in wound healing devices/dressings, while the NP is designed to have ROS reactivity (making
it inherently antioxidant). The NPs can also be “pre-loaded” with drugs prior to hydrogel formation, providing a
mechanism for sustained drug release to the wound site.
The first aim of this project will be to optimize the proposed NP/HA hydrogel system by tuning polymer
molecular weight and AD/CD modification density on the NP and HA components, respectively. The second aim
will involve testing of lead candidate hydrogels in vivo to assess tissue response, sustained model drug release,
and ROS scavenging / protection of therapeutic stem cells loaded into the device. In the third aim, we will
compare the leading NP/HA hydrogel formulation to a HA-based, clinical control material for healing benefit alone
on in combination with either stem cells or a small molecule drug that activates the pro-healing transcription
factor HIF1alpha. These studies, designed to establish proof of concept for clinical efficacy, will be completed in
extremely challenged (ischemic and genetically-driven enhanced ROS phenotype) diabetic wound models. Our
multidisciplinary team, including a bioengineer, chemist, wound healing expert, and stem cell expert, is poised
to achieve the proposed goals toward establishing a new wound healing platform.
项目概要:
不愈合的皮肤伤口是全世界发病的一个主要来源,并且由于以下原因而变得越来越负担:
医疗保健费用的增加、人口老龄化和糖尿病发病率的增加。
近 25% 的糖尿病患者会出现伤口,约 6% 因伤口相关而入院治疗
治疗如果不成功,可能会导致截肢或死亡,而更先进的治疗方法也有。
所需的尖端多组分技术,例如水凝胶或负载细胞的支架
和/或药物尚未达到临床效果,候选新疗法的失败通常是由于组织不良。
整合、药物释放曲线不足以及递送时生物(细胞或生长因子)活性丧失
进入一个以高浓度细胞因子、蛋白酶和
细胞毒性活性氧(ROS)。
当前项目的总体目标是开发和应用下一代剪切稀化和ROS
清除水凝胶,包含 ROS 响应纳米颗粒 (NP) 和透明质酸 (HA) 的混合物,
天然细胞外基质成分将实现剪切稀化水凝胶的机械性能。
通过基于金刚烷(AD)和β-环糊精(CD)的客体化学,形成可逆的,
机械稳定的包合物将被 AD 和 HA 聚合物表面功能化。
用 CD 进行改性;当这两种组分混合时,它们会形成剪切稀化溶液,可快速自粘
愈合后在组织缺损内形成稳定的水凝胶,因为它有先例。
用于在伤口愈合装置/敷料中有效使用,而 NP 被设计为具有 ROS 反应性(使得
纳米颗粒也可以在水凝胶形成之前“预载”药物,从而提供抗氧化剂。
药物持续释放到伤口部位的机制。
该项目的首要目标是通过调整聚合物来优化所提出的 NP/HA 水凝胶系统
第二个目标分别是 NP 和 HA 组分的分子量和 AD/CD 修饰密度。
将涉及对主要候选水凝胶进行体内测试,以评估组织反应、持续模型药物释放、
ROS 清除/保护加载到设备中的治疗干细胞在第三个目标中,我们将。
将领先的 NP/HA 水凝胶配方与基于 HA 的临床对照材料进行比较,仅考虑治愈效果
与干细胞或激活促愈合转录的小分子药物结合使用
这些研究旨在建立临床疗效的概念验证,将于 2019 年完成。
极度困难的(缺血性和基因驱动的增强的 ROS 表型)糖尿病伤口模型。
多学科团队,包括生物工程师、化学家、伤口愈合专家和干细胞专家,已做好准备
实现建立新伤口愈合平台的拟议目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Lewis Duvall其他文献
Craig Lewis Duvall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Lewis Duvall', 18)}}的其他基金
Next Gen Targeted nanoparticles for Inhibiting Gli2 in Bone Metastatic Tumors
用于抑制骨转移肿瘤中 Gli2 的下一代靶向纳米颗粒
- 批准号:
10623705 - 财政年份:2023
- 资助金额:
$ 47.54万 - 项目类别:
Albumin hitchhiking siRNAs for gene targeting in aged brain
白蛋白搭便车 siRNA 用于老年大脑基因靶向
- 批准号:
10467737 - 财政年份:2022
- 资助金额:
$ 47.54万 - 项目类别:
Tissue Adhesive RNA Interference Nanoparticles to Block Progression of Posttraumatic and Spontaneous Osteoarthritis.
组织粘附 RNA 干扰纳米颗粒可阻止创伤后和自发性骨关节炎的进展。
- 批准号:
10539405 - 财政年份:2022
- 资助金额:
$ 47.54万 - 项目类别:
Tissue Adhesive RNA Interference Nanoparticles to Block Progression of Posttraumatic and Spontaneous Osteoarthritis.
组织粘附 RNA 干扰纳米颗粒可阻止创伤后和自发性骨关节炎的进展。
- 批准号:
10688080 - 财政年份:2022
- 资助金额:
$ 47.54万 - 项目类别:
Albumin hitchhiking siRNAs for gene targeting in aged brain
白蛋白搭便车 siRNA 用于老年大脑基因靶向
- 批准号:
10611521 - 财政年份:2022
- 资助金额:
$ 47.54万 - 项目类别:
Hybrid Synthetic and Biologic Shear Thinning Hydrogels for Diabetic Wound Healing
用于糖尿病伤口愈合的混合合成和生物剪切稀化水凝胶
- 批准号:
10446305 - 财政年份:2021
- 资助金额:
$ 47.54万 - 项目类别:
Albumin Binding siRNAs for Systemic Treatment of Multi-Joint Osteoarthritis
白蛋白结合 siRNA 用于多关节骨关节炎的全身治疗
- 批准号:
10358582 - 财政年份:2021
- 资助金额:
$ 47.54万 - 项目类别:
Hybrid Synthetic and Biologic Shear Thinning Hydrogels for Diabetic Wound Healing
用于糖尿病伤口愈合的混合合成和生物剪切稀化水凝胶
- 批准号:
10245000 - 财政年份:2019
- 资助金额:
$ 47.54万 - 项目类别:
Hybrid Synthetic and Biologic Shear Thinning Hydrogels for Diabetic Wound Healing
用于糖尿病伤口愈合的混合合成和生物剪切稀化水凝胶
- 批准号:
10005338 - 财政年份:2019
- 资助金额:
$ 47.54万 - 项目类别:
MK2 Inhibitory Nanoplexes to Enhance Long-Term Vascular Graft Patency
MK2 抑制性纳米复合物可增强血管移植物的长期通畅性
- 批准号:
9463239 - 财政年份:2016
- 资助金额:
$ 47.54万 - 项目类别:
相似国自然基金
乙基桥键金刚烷类化合物形成机理及在深层油气地球化学研究中的应用
- 批准号:42272167
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
高金刚烷类笼状PPAPs家族天然产物的对映选择性全合成
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
金刚烷胺B细胞受体CDR3免疫组库动态演化及分子识别机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金刚烷类化合物在有机质来源和成因判识中的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
高氧化度氮杂金刚烷骨架构建及其高能量密度衍生物的合成与性能研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Novel, Self-Applied MicroArray Patch (MAP) of Zanamivir for Treatment of the Flu
用于治疗流感的新型扎那米韦自用微阵列贴片 (MAP)
- 批准号:
10761086 - 财政年份:2023
- 资助金额:
$ 47.54万 - 项目类别:
On Demand Dissoluble Supramolecular Hydrogels: Towards Pain Free Burn Dressings
按需可溶性超分子水凝胶:迈向无痛烧伤敷料
- 批准号:
10658220 - 财政年份:2023
- 资助金额:
$ 47.54万 - 项目类别:
Local immune modulation for beta cell replacement therapy in type 1 diabetes
1 型糖尿病 β 细胞替代疗法的局部免疫调节
- 批准号:
10596656 - 财政年份:2022
- 资助金额:
$ 47.54万 - 项目类别:
Modular synthesis of bioactive polycyclic polyprenylated acyl phloroglucinols by a symmetry-guided approach
通过对称引导方法模块化合成生物活性多环聚异戊二烯化酰基间苯三酚
- 批准号:
10577412 - 财政年份:2022
- 资助金额:
$ 47.54万 - 项目类别:
Modular synthesis of bioactive polycyclic polyprenylated acyl phloroglucinols by a symmetry-guided approach
通过对称引导方法模块化合成生物活性多环聚异戊二烯化酰基间苯三酚
- 批准号:
10387314 - 财政年份:2022
- 资助金额:
$ 47.54万 - 项目类别: