Regulation of angiogenesis by matrix stiffness in an ECM-mimetic hydrogel

ECM 模拟水凝胶中基质硬度对血管生成的调节

基本信息

  • 批准号:
    8145333
  • 负责人:
  • 金额:
    $ 4.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-13 至 2012-07-12
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Angiogenesis, in which endothelial cells (ECs) form new blood vessels from pre-existing ones, is a central component of tissue development, wound healing, and cancer progression. ECs engaged in angiogenesis must negotiate and integrate a complex array of extracellular stimuli: adhesive signals, soluble factors, and mechanical stiffness are known or implicated to have critical roles. ECs integrate extracellular stimuli in concert, so it has been difficult to decouple the contributions of characteristics such as stiffness from other pericellular effectors. What is needed is an experimental system that can be used to independently vary ECM components to allow for the investigation of fundamental EC-mediated angiogenic processes. In this work, we develop and apply a synthetic hydrogel system that can be used to separate and assess the contribution of each of these factors independently. We first examine the effect of stiffness on ex vivo and in vitro models of angiogenesis and the angiogenic phenotype while holding adhesivity constant We have found that angiogenesis exhibits cl biphasic response to stiffness, with gels that are too stiff or too soft unable to support angiogenesis. We next test the hypothesis that stiffness is potentiating the expression of proteolytic enzymes from the matrix metalloproteinase (MMP) family. Finally, we further test our model by holding both adhesivity and stiffness constant and instead varying the MMP-susceptibility of our hydrogel. We will use MMP-inhibition studies to implicate the specific MMPs involved in these remodeling processes. Angiogenesis is a natural process by which new blood vessels form from preexisting ones in growing tissues. However, this natural process is also known to have aberrant effects in human diseases such as cancer and diabetes. The goal of this project is to, at a fundamental level, understand the cellular events and chemical communication involved in this process which will ultimately allow the development of new disease therapies.
描述(由申请人提供):血管生成,即内皮细胞(EC)从预先存在的血管形成新血管,是组织发育、伤口愈合和癌症进展的核心组成部分。参与血管生成的内皮细胞必须协调和整合一系列复杂的细胞外刺激:已知或暗示粘附信号、可溶性因子和机械刚度具有关键作用。 EC 协调一致地整合细胞外刺激,因此很难将硬度等特性的贡献与其他细胞周效应器分开。我们需要的是一个可用于独立改变 ECM 成分的实验系统,以便研究基本的 EC 介导的血管生成过程。在这项工作中,我们开发并应用了一种合成水凝胶系统,该系统可用于独立分离和评估每个因素的贡献。我们首先检查硬度对离体和体外血管生成模型和血管生成表型的影响,同时保持粘附性恒定。我们发现血管生成对硬度表现出 cl 双相反应,太硬或太软的凝胶都无法支持血管生成。接下来,我们测试了以下假设:硬度会增强基质金属蛋白酶 (MMP) 家族中蛋白水解酶的表达。最后,我们通过保持粘附性和刚度恒定并改变水凝胶的 MMP 敏感性来进一步测试我们的模型。我们将使用 MMP 抑制研究来揭示参与这些重塑过程的特定 MMP。血管生成是生长组织中现有血管形成新血管的自然过程。然而,这种自然过程也对癌症和糖尿病等人类疾病产生异常影响。该项目的目标是从根本上了解该过程中涉及的细胞事件和化学通讯,这最终将有助于开发新的疾病疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jordan S. Miller其他文献

Bioinks for Three-Dimensional Printing in Regenerative Medicine
用于再生医学三维打印的生物墨水
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Javier Navarro;Gisele A. Calderon;Jordan S. Miller;J. Fisher
  • 通讯作者:
    J. Fisher
Vascular Networks Within 3D Printed and Engineered Tissues
3D 打印和工程组织内的血管网络
  • DOI:
    10.1007/978-3-319-40498-1_23-1
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Daniel W. Sazer;Jordan S. Miller
  • 通讯作者:
    Jordan S. Miller
Biophysics of biofabrication.
生物制造的生物物理学。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6
  • 作者:
    T. Woodfield;L. Moroni;Jordan S. Miller
  • 通讯作者:
    Jordan S. Miller
Editorial: Special Issue on 3D Printing of Biomaterials.
社论:生物材料 3D 打印特刊。
Rapid Prototyping of Hydrogels to Guide Tissue Formation
指导组织形成的水凝胶快速原型制作
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jordan S. Miller;J. West
  • 通讯作者:
    J. West

Jordan S. Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jordan S. Miller', 18)}}的其他基金

Regulation of angiogenesis by matrix stiffness in an ECM-mimetic hydrogel
ECM 模拟水凝胶中基质硬度对血管生成的调节
  • 批准号:
    7804930
  • 财政年份:
    2010
  • 资助金额:
    $ 4.55万
  • 项目类别:
Biointerface Engineering to Direct Cell Migration
直接细胞迁移的生物界面工程
  • 批准号:
    7222425
  • 财政年份:
    2007
  • 资助金额:
    $ 4.55万
  • 项目类别:

相似国自然基金

电活性骨粘合剂通过调控神经源性外泌体释放促进骨质疏松粉碎性骨折快速愈合的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于溶剂响应性缠结高分子的动态水环境适用粘合剂
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
动力锂电池正极涂布快速制造中粘合剂分布均匀性调控及能耗优化研究
  • 批准号:
    51905361
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
预应力用缓粘结粘合剂固化机理及流变性研究
  • 批准号:
    51578557
  • 批准年份:
    2015
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Novel nanoparticles to stimulate therapeutic angiogenesis in peripheral arterial disease
刺激外周动脉疾病治疗性血管生成的新型纳米颗粒
  • 批准号:
    10756875
  • 财政年份:
    2022
  • 资助金额:
    $ 4.55万
  • 项目类别:
Is inhibiting pili electrical conductivity a new anti-virulence strategy?
抑制菌毛导电性是一种新的抗毒策略吗?
  • 批准号:
    10387218
  • 财政年份:
    2022
  • 资助金额:
    $ 4.55万
  • 项目类别:
Multifidelity and multiscale modeling of the spleen function in sickle cell disease with in vitro, ex vivo and in vivo validations
镰状细胞病脾功能的多保真度和多尺度建模,并进行体外、离体和体内验证
  • 批准号:
    10685262
  • 财政年份:
    2020
  • 资助金额:
    $ 4.55万
  • 项目类别:
Handheld 3D Bioprinting of Self-Healing Hydrogels for Vocal Fold Reconstruction
用于声带重建的自愈水凝胶的手持式 3D 生物打印
  • 批准号:
    10038971
  • 财政年份:
    2020
  • 资助金额:
    $ 4.55万
  • 项目类别:
Dysregulation of Platelet-von Willebrand Factor Interaction in Trauma-Induced Coagulopathy
创伤性凝血病中血小板-血管性血友病因子相互作用的失调
  • 批准号:
    10559557
  • 财政年份:
    2020
  • 资助金额:
    $ 4.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了