Synchronized Automated Valve CPR for Cardiac Arrest
用于心脏骤停的同步自动阀 CPR
基本信息
- 批准号:8057823
- 负责人:
- 金额:$ 25.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-15 至 2013-10-01
- 项目状态:已结题
- 来源:
- 关键词:AcuteAmericanAnimalsAortaBloodBlood CirculationBlood flowBrainCardiacCardiac OutputCaregiversCaringCerebrumChestChest wall structureComplexCoronary CirculationDevelopmentDevicesDiseaseElectronicsElementsEmergency SituationEnvironmental air flowFamily memberFamily suidaeFatigueGenerationsGoalsHandHealthHealth PersonnelHeartHeart ArrestHospitalsHourHumanHyperventilationInjuryInsufflationIntracranial PressureInvestigationLeft ventricular structureLungManualsMechanicsMedicalModelingMorbidity - disease rateMotorMyocardial IschemiaNervous System PhysiologyNeurologicOrganOutcome StudyOxygenPatientsPerformancePerfusionPhasePhysiologyPlayPrincipal InvestigatorProviderPumpResearch ProposalsResistanceResuscitationRight atrial structureRoleSmall Business Innovation Research GrantSurvival RateSurvivorsSystemTechnologyTimeTrainingUnited StatesVenousbasecoronary perfusiondesignelectric impedancehemodynamicsimprovedindexinginnovationmortalitynew technologynovelnovel strategiespressureprototype
项目摘要
DESCRIPTION (provided by applicant): STD CPR by itself is inherently inefficient, in large part due to the lack of mechanical forces to draw blood into the heart during the chest wall recoil phase in order to refill the emptied chambers of the heart after each chest compression. Moreover, the coronary perfusion pressure is only marginally adequate as the pressure gradient between the aorta, the right atrium and left ventricle is far from optimal. When these inherent inefficiencies are combined with the multiple common errors associated with CPR performance (e.g. hyperventilation, incomplete chest wall depth and recoil) and the element of physical fatigue documented by even the fit and well-trained professional providers of CPR, it is clearly time for an industrial revolution in resuscitation and a better mechanical means to perform automated CPR. Based upon a combination of newly discovered multiple mechanisms to enhance circulation during CPR and the need to reduce human errors intrinsic to the performance of manual closed chest CPR, the goal of this SBIR phase 1 application is to develop a novel automated CPR device to further improve blood flow during cardiac arrest. The new automated device combines the concept of negative intrathoracic pressure (ITP) to enhance cardiac preload and lower resistance to brain blood flow by lowering intracranial pressure with that of providing intermittent, yet moderate, positive intrathoracic compression-phase pressures using oxygen insufflation to additionally enhance forward blood flow while maintaining oxygenation. The innovation of the new device lies in its design to optimize circulation of blood to the brain and other vital organs throughout the entire CPR cycle. Two core technologies will be combined in this 5-cycle automated CPR technology. They include: 1) a sternal active compression-decompression device to provide continuous chest compressions and full chest recoil, and 2) an electronic airway valve to both lower ITP during the chest decompression phase and provide passive oxygen insufflation after every other decompression to optimize circulation and provide ongoing hands-free ventilation. These two core technologies will be CPR-cycle synchronized to enhance cardiac preload, cardiac output, continuous blood flow to the brain, and oxygen delivery with a single automated device that does not rely on the quality of CPR provided by the caregiver. The specific aims of this research proposal are to: 1) Design and build a prototype non- invasive automated CPR device for the treatment of cardiac arrest to provide optimal continuous circulation to the brain and other vital organs; 2) Demonstrate that use of the novel CPR device will significantly improve acute hemodynamics, vital organ blood flow, and 24-hour neurologically-intact survival when compared with STD CPR plus the ITD in a porcine model of cardiac arrest. This unique combination of non-invasive physiologically-based mechanisms has the potential to provide normal levels of circulation and ventilation during cardiac arrest which can significantly improve long-term neurologically-intact survival rates. If successful, this invention will result in saving >10,000 more Americans each year from out of hospital cardiac arrest and a similar number of in-hospital survivors based upon the superior blood flow and the ability to perform prolonged CPR with normal physiology.
描述(由申请人提供):STD CPR 本身效率低下,很大程度上是由于在胸壁反冲阶段缺乏机械力将血液吸入心脏,以便在每次胸腔后重新填充心脏的空腔。压缩。此外,冠状动脉灌注压仅勉强足够,因为主动脉、右心房和左心室之间的压力梯度远非最佳。当这些固有的低效率与心肺复苏表现相关的多种常见错误(例如过度换气、胸壁深度不完整和反冲)以及即使是健康且训练有素的心肺复苏专业提供者记录的身体疲劳因素相结合时,显然是时候进行心肺复苏了。复苏领域的工业革命和更好的机械手段来执行自动心肺复苏。基于新发现的多种机制的组合,以增强 CPR 期间的循环,以及减少手动闭胸 CPR 性能固有的人为错误的需求,该 SBIR 第一阶段应用的目标是开发一种新型自动化 CPR 设备,以进一步改善心脏骤停期间的血流量。新的自动化设备结合了胸内负压 (ITP) 的概念,通过降低颅内压来增强心脏前负荷并降低脑血流阻力,并通过吹氧提供间歇性但适度的胸内压缩相正压来进一步增强在保持氧合的同时促进血流。新设备的创新之处在于其设计能够在整个心肺复苏周期中优化大脑和其他重要器官的血液循环。这项 5 周期自动心肺复苏技术将结合两项核心技术。它们包括:1) 胸骨主动压缩减压装置,用于提供持续胸部按压和全胸部反冲,2) 电子气道阀,用于在胸部减压阶段降低 ITP,并在每次减压后提供被动注氧,以优化循环并提供持续的免提通气。这两项核心技术将与心肺复苏周期同步,以通过不依赖于护理人员提供的心肺复苏质量的单个自动化设备来增强心脏前负荷、心输出量、流向大脑的持续血流和氧气输送。本研究计划的具体目标是: 1)设计和构建原型无创自动心肺复苏设备,用于治疗心脏骤停,为大脑和其他重要器官提供最佳的持续循环; 2) 证明在猪心脏骤停模型中,与 STD CPR 加 ITD 相比,使用新型 CPR 装置将显着改善急性血流动力学、重要器官血流量和 24 小时神经完整存活率。这种基于非侵入性生理机制的独特组合有可能在心脏骤停期间提供正常水平的循环和通气,从而显着提高长期神经完整的存活率。如果成功,基于良好的血流和在正常生理状态下进行长时间心肺复苏的能力,这项发明每年将拯救超过 10,000 名院外心脏骤停的美国人,并拯救类似数量的院内幸存者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anja Kohler Metzger其他文献
Anja Kohler Metzger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anja Kohler Metzger', 18)}}的其他基金
Improving neurological survival after cardiac arrest during post-resuscitation ca
提高心脏骤停后复苏后神经系统的存活率
- 批准号:
8780929 - 财政年份:2014
- 资助金额:
$ 25.63万 - 项目类别:
Novel bundled mechanical and pharmacological CPR platform
新颖的捆绑式机械和药物心肺复苏平台
- 批准号:
8308832 - 财政年份:2012
- 资助金额:
$ 25.63万 - 项目类别:
相似海外基金
Mitochondrial regulation of nociceptor function
伤害感受器功能的线粒体调节
- 批准号:
10644865 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
The lipid hydrolase NAAA as a target for non-addictive analgesic medications
脂质水解酶 NAAA 作为非成瘾性镇痛药物的靶标
- 批准号:
10584428 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
An Inhaled Microbiome-Targeted Biotherapeutic for Treatment of COPD
一种吸入性微生物组靶向生物治疗药物,用于治疗慢性阻塞性肺病
- 批准号:
10600887 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别: