Automatic Segmentation of Organs in Computed Tomography for Radiation Therapy Pla

放射治疗平面计算机断层扫描中器官的自动分割

基本信息

  • 批准号:
    8123632
  • 负责人:
  • 金额:
    $ 25.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-02 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Medical Vision Systems has developed a new image segmentation technology that improves the accuracy and robustness of automated medical image segmentation. Our commercial goal is to offer a product that produces accurate, fast, fully automatic segmentations at low cost to aid the Intensity Modulated Radiation Therapy (IMRT) treatment of prostate cancer. The use of Intensity-Modulated Radiation Therapy (IMRT) has become the preferred method for treating prostate cancer through radiation doses in excess of 70 Gy [1]. This technology has been developed to ensure that therapeutic doses of radiation are delivered only to the target organs, the prostate and the seminal vesicles, without affecting nearby non- involved structures, such as the bladder and the rectum. This technique relies on dose planning software and dynamic multileaf collimators to shield these sensitive organs. Without preventative measures, 15% to 35% of patients developed grade 2 or worse rectal toxicity [2, 19, 20, 22, 31, 32] and, with less statistical certainty, increased late urinary complications [5, 12, 30]. IMRT Treatment Planning software requires accurate segmentations of the organs in the abdomen and pelvis. Segmentations of the prostate that include neighboring tissues can irradiate those tissues unnecessarily, while segmentations of organs such as the bladder or rectum that include too much surrounding tissue can interfere with complete delivery of radiation dose. Thus, an inaccurate segmentation has a real effect on the quality of life of the patient. Furthermore, the time required to produce a manual segmentation of the organs of interest significantly limits the number of radiation therapy treatments that can be undertaken. In addition, if image-guided radiation therapy (IGRT) supplants IMRT in the same way that IMRT has supplanted conformal therapy, then manual segmentation will become an even more limiting bottleneck in contemporary radiation therapy. Preliminary work has begun through partnerships with three cancer treatment centers. The investigators have built upon previous work that shows the Auto Context Model (ACM) with AdaBoost is effective at subcortical segmentation in magnetic resonance (MR) imaging [15, 14, 16, 17, 18]. We propose to build upon this foundation to develop a new learning-based image segmentation system capable of accurately and automatically segmenting organs of interest in abdominal x-ray computed tomography (CT) scans taken at different imaging facilities. Accurate segmentation of organs in abdominal CT images is complicated by large variations in abdominal anatomy, motion of abdominal tissues, the limited contrast between anatomic structures in x-ray computed tomography, and variations in imaging equipment, protocols, and techniques. In this Phase I SBIR proposal, we will address the limitations of existing segmentation tools to achieve the accuracy and automation required for IMRT treatment planning. We propose to develop an innovative learning-based segmentation system using both bottom-up and top-down approaches. We will construct a novel feature dictionary, implicitly incorporate atlas-based segmentation methods through the use of image registration techniques, and build a modest "ground truth" database using images acquired and segmented by our collaborators. A Phase II proposal would demonstrate the clinical feasibility of these techniques, addressing both the stability of the system across multiple imaging sites and determining the impact of the proposed system on patient outcomes through increased segmentation accuracy. PUBLIC HEALTH RELEVANCE: Medical Vision Systems has developed a new learning-based image segmentation technology that can simultaneously improve the accuracy and robustness of automated medical image segmentation. Our commercial goal is to offer a product that produces accurate, fast, and fully automatic segmentations at low cost to aid in Intensity Modulated Radiation Therapy (IMRT) and, in the future, Image Guided Radiation Therapy (IGRT) for prostate cancer.
描述(由申请人提供):医学视觉系统公司开发了一种新的图像分割技术,可提高自动医学图像分割的准确性和鲁棒性。我们的商业目标是提供一种能够以低成本产生准确、快速、全自动分割的产品,以帮助前列腺癌的调强放射治疗 (IMRT) 治疗。 调强放射治疗 (IMRT) 的使用已成为通过超过 70 Gy 的辐射剂量治疗前列腺癌的首选方法 [1]。这项技术的开发是为了确保治疗剂量的辐射仅传递到目标器官、前列腺和精囊,而不影响附近的非相关结构,例如膀胱和直肠。该技术依靠剂量计划软件和动态多叶准直器来保护这些敏感器官。如果没有预防措施,15% 至 35% 的患者会出现 2 级或更严重的直肠毒性 [2, 19, 20, 22, 31, 32],并且在统计确定性较低的情况下,晚期泌尿道并发症会增加 [5, 12, 30]。 IMRT 治疗计划软件需要对腹部和骨盆器官进行准确分割。包括邻近组织的前列腺分割可能会不必要地照射这些组织,而包括过多周围组织的膀胱或直肠等器官的分割可能会干扰辐射剂量的完全传递。因此,不准确的分割会对患者的生活质量产生实际影响。此外,对感兴趣的器官进行手动分割所需的时间极大地限制了可以进行的放射治疗的数量。此外,如果图像引导放射治疗(IGRT)以 IMRT 取代适形治疗的方式取代 IMRT,那么手动分割将成为当代放射治疗中更具限制性的瓶颈。 通过与三个癌症治疗中心的合作,初步工作已经开始。研究人员在之前的工作基础上进行了研究,该工作表明采用 AdaBoost 的自动上下文模型 (ACM) 在磁共振 (MR) 成像中的皮层下分割方面非常有效 [15,14,16,17,18]。我们建议在此基础上开发一种新的基于学习的图像分割系统,能够准确、自动地分割在不同成像设施拍摄的腹部 X 射线计算机断层扫描 (CT) 扫描中感兴趣的器官。由于腹部解剖结构的巨大变化、腹部组织的运动、X 射线计算机断层扫描中解剖结构之间的有限对比度以及成像设备、协议和技术的变化,腹部 CT 图像中器官的精确分割变得复杂。 在第一阶段 SBIR 提案中,我们将解决现有分割工具的局限性,以实现 IMRT 治疗计划所需的准确性和自动化。我们建议使用自下而上和自上而下的方法开发一种创新的基于学习的细分系统。我们将构建一个新颖的特征字典,通过使用图像配准技术隐式地结合基于图集的分割方法,并使用我们的合作者获取和分割的图像构建一个适度的“地面实况”数据库。 II 期提案将证明这些技术的临床可行性,解决系统在多个成像部位的稳定性问题,并通过提高分割精度来确定拟议系统对患者结果的影响。 公共健康相关性:Medical Vision Systems 开发了一种新的基于学习的图像分割技术,可以同时提高自动化医学图像分割的准确性和鲁棒性。我们的商业目标是提供一种能够以低成本产生准确、快速和全自动分割的产品,以帮助调强放射治疗 (IMRT) 以及未来的前列腺癌图像引导放射治疗 (IGRT)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark McKenzie Roden其他文献

Mark McKenzie Roden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
  • 批准号:
    10734258
  • 财政年份:
    2023
  • 资助金额:
    $ 25.99万
  • 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
  • 批准号:
    10726834
  • 财政年份:
    2023
  • 资助金额:
    $ 25.99万
  • 项目类别:
Ovarian Function Among Samoan Women with Obesity
萨摩亚肥胖女性的卵巢功能
  • 批准号:
    10605790
  • 财政年份:
    2023
  • 资助金额:
    $ 25.99万
  • 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
  • 批准号:
    10836298
  • 财政年份:
    2023
  • 资助金额:
    $ 25.99万
  • 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
  • 批准号:
    10636536
  • 财政年份:
    2023
  • 资助金额:
    $ 25.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了