Neural Tract-tracing Nucleic Acid Carriers

神经束示踪核酸载体

基本信息

项目摘要

DESCRIPTION (provided by applicant): "Neural Tract-tracing Nucleic Acid Carriers" Existing transfection reagents perform very poorly in mature neurons in vitro, and are not suitable for in vivo use. This Phase I project will test the performance of a novel nucleic acid carrier under development at Innovative Surface Technologies, Inc. (ISurTec) for universal transfection of neurons in vitro and in vivo. This technology is platform-based and consists of a polymeric nanoparticle for high-efficiency non-viral gene and siRNA transfection, chemically masked as a neural tract-tracer through surface modification. Neural tract-tracing surface chemistry was chosen for the carrier because the tract-tracers have repeatedly demonstrated efficient reagent uptake and retrograde particle transport, which are believed to be the major barriers to neuronal transfection. Retrograde transport is particularly important for transfection of mature neurons with gene constructs, due to the highly elongated nature of neuronal processes. The proposed carrier also includes surface functional groups for customizable attachment of targeting ligands. The objectives of this research project are to optimize the reagent formulation to achieve a transfection efficiency of greater than 50% in mature mammalian neurons, demonstrate neuronal sub-type targeting capability through ligand attachment, and predictably modify the functional properties of a CNS circuit in an animal model. Successful development of this technology will enable the targeted regulation/observation of neuroplasticity and circuit function in the intact nervous system using molecular constructs. An unprecedented level of transfection efficiency and targeting capability for mature neurons is expected from this nucleic acid carrier by incorporating the essential features of nanoparticulate neural tract-tracers. A combination of high efficiency transfection and precise in vivo targeting capability would serve as a bridge between the field of molecular neurosciences and the systems, behavioral, and preclinical neurosciences, greatly increasing our means to understand and manipulate neuroplasticity and brain function, by enabling the increasingly powerful molecular- biological tools in use today to be broadly applied to neuroscience research. Ultimately, this strategy is expected to lead to more effective therapeutic treatments for a variety of neurological diseases and disorders, including Parkinson's disease, brain injury, and chronic drug addiction. PUBLIC HEALTH RELEVANCE: Neurological diseases and disorders, ranging from Parkinson's disease to chronic drug addiction, are extremely difficult to treat due to the complexity and unique challenges of the brain, its neurons, and its circuits. Moreover, neurons are highly resistant to nucleic acid transfection, which hinders the application of today's increasingly powerful molecular-biological tools in neuroscience research. In this Phase I proposal we will test a novel nanoparticle technology designed to significantly increase our understanding of nervous system function through the genetic regulation of brain circuits, and enable more effective treatments for variety of ailments afflicting the human nervous system.
描述(由申请人提供):“神经束追踪核酸载体” 现有的转染试剂在体外成熟神经元中表现非常差,并且不适合体内使用。该第一阶段项目将测试 Innovative Surface Technologies, Inc. (ISurTec) 正在开发的新型核酸载体的性能,用于体外和体内神经元的通用转染。该技术基于平台,由用于高效非病毒基因和 siRNA 转染的聚合物纳米颗粒组成,通过表面修饰以化学方式掩盖为神经束示踪剂。选择神经束示踪表面化学作为载体,因为神经束示踪剂已多次证明有效的试剂摄取和逆行颗粒运输,这被认为是神经元转染的主要障碍。由于神经元过程高度伸长的性质,逆行转运对于用基因构建体转染成熟神经元特别重要。所提出的载体还包括用于可定制地附着靶向配体的表面官能团。该研究项目的目标是优化试剂配方,以在成熟哺乳动物神经元中实现大于 50% 的转染效率,通过配体附着展示神经元亚型靶向能力,并可预测地修改中枢神经系统回路的功能特性。动物模型。这项技术的成功开发将能够利用分子结构对完整神经系统中的神经可塑性和回路功能进行有针对性的调节/观察。通过结合纳米颗粒神经束示踪剂的基本特征,这种核酸载体有望实现前所未有的转染效率和对成熟神经元的靶向能力。高效转染和精确的体内靶向能力的结合将成为分子神经科学领域与系统、行为和临床前神经科学之间的桥梁,通过使日益增长的神经可塑性和大脑功能成为可能,大大增加我们理解和操纵神经可塑性和大脑功能的手段。当今使用的强大的分子生物学工具将广泛应用于神经科学研究。最终,这一策略有望为多种神经系统疾病和紊乱带来更有效的治疗方法,包括帕金森病、脑损伤和慢性毒瘾。 公共健康相关性:由于大脑、神经元及其回路的复杂性和独特的挑战,从帕金森病到慢性毒瘾等神经系统疾病和病症极难治疗。此外,神经元对核酸转染具有高度抵抗力,这阻碍了当今日益强大的分子生物学工具在神经科学研究中的应用。在第一阶段的提案中,我们将测试一种新颖的纳米颗粒技术,该技术旨在通过大脑回路的基因调节显着提高我们对神经系统功能的理解,并能够更有效地治疗困扰人类神经系统的各种疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Stephen Guire其他文献

Eric Stephen Guire的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Stephen Guire', 18)}}的其他基金

Ultra-low attachment coatings to maintain CSF shunt patency
超低附着涂层可保持脑脊液分流管的通畅
  • 批准号:
    10077986
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
Bioartificial Brain Slices for Drug Screening
用于药物筛选的生物人工脑切片
  • 批准号:
    8592458
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
Neural Tract-tracing Nucleic Acid Carriers
神经束示踪核酸载体
  • 批准号:
    8298980
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:

相似国自然基金

基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
  • 批准号:
    82304894
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
胺类有机物修饰的铂单晶电极|电解质界面结构及氧还原反应研究
  • 批准号:
    22372154
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
长链阴离子捕收剂对胺类捕收剂反浮选赤铁矿的优化及其泡沫调控机制
  • 批准号:
    52364029
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
烟曲链霉菌不对称合成手性胺类人工产物4β-AIP的手性控制机制
  • 批准号:
    22378230
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
电力行业碳捕集装置醇胺类物质挥发性及其逃逸特征研究
  • 批准号:
    22376113
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Illumination of TAAR2 Location, Function and Regulators
TAAR2 位置、功能和调节器的阐明
  • 批准号:
    10666759
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
  • 批准号:
    10723977
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Biochemical and functional characterization of a novel anti-inflammatory biogenic amine
新型抗炎生物胺的生化和功能表征
  • 批准号:
    10610183
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Mechanisms of PhIP-induced dopaminergic neurotoxicity
PhIP 诱导多巴胺能神经毒性的机制
  • 批准号:
    10595271
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Shigella Conjugate Vaccine (SCV4) Development, Characterization, and Pre-clinical Evaluation
志贺氏菌结合疫苗 (SCV4) 的开发、表征和临床前评估
  • 批准号:
    10704325
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了