Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
基本信息
- 批准号:10723977
- 负责人:
- 金额:$ 10.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsAreaAutopsyAwardBehaviorBehavioralBindingBiochemistryBiogenic AminesBiologyBrainCalendarCellsCuesDiseaseDopamineDrosophila genusEtiologyExhibitsExposure toFluorescent in Situ HybridizationFoundationsGenerationsGoalsHealthHourHumanHypothalamic structureImmunohistochemistryKnowledgeLightLinkMammalsMediatingMembraneMental DepressionMentorsMentorshipMethodsMicroscopyModelingMolecular GeneticsMotor ActivityNatureNeuronal PlasticityNeuronsNeuropeptidesNeurotransmittersOrganismOutcomeOutputPeptidesPeriplasmic Binding ProteinsPhotoperiodPhysiologyPositioning AttributePostdoctoral FellowPrevalenceProcessProteinsReportingResearchResearch PersonnelResolutionRoleSeasonal Affective DisorderSeasonal VariationsSeasonsSerotoninSignal TransductionStructureSynapsesSystemTemperatureTestingTherapeuticTimeTrainingVariantcareercircadiancircadian pacemakerday lengthdensitydopaminergic neurondynamic systemflyfunctional plasticityhuman diseasein vivoinsightlight intensityneurogeneticsneuronal circuitryparaventricular nucleusphotoperiodicityresponsesensorsensory integrationsocialsuccesssuprachiasmatic nucleustooltranscriptomics
项目摘要
Project Summary
Organisms adapt to seasonal changes in environmental conditions to survive. These adaptations rely
predominantly on photoperiod (i.e., daylength), but are also influenced by temperature. Recent studies indicate
that photoperiodic changes affect the neuronal composition of brain areas involved in circadian (i.e., daily)
timekeeping and modulate the number of dopaminergic neurons, in a process known as neurotransmitter
switching. Other studies show that the brain also undergoes profound structural changes across seasons.
However, the relationship between these functional and structural changes in the brain and seasonal adaptations
remains a major gap in knowledge. Moreover, whether other relevant seasonal cues, in particular temperature,
contribute to these changes is not known. The overall goal of this project is to understand the nature and role
of neuronal plasticity in the integration of seasonal cues to promote seasonal adaptations. My hypothesis is
that seasonal adaptations are mediated by functional and structural plasticity in neurons from circadian
and aminergic circuits in response to environmental cues. To test this, I propose 3 specific aims: investigate
structural and functional plasticity of (1) the circadian clock neuronal network and of (2) aminergic circuits in
response to seasonal cues and its impact on social and locomotor behavior, and (3) determine how the plastic
changes in the circadian clock and aminergic circuits regulate brain connectivity and encode the behavioral
output of these circuits. I will accomplish this project in the genetically tractable Drosophila model and will
leverage a combination of versatile neurogenetics, high-resolution microscopy, and well-established behavioral
analysis.
Thus far in my postdoctoral career in the Chiu lab at UC Davis, I obtained training in molecular genetics
and biochemistry, which I used to explore the role of circadian peptides in modulating seasonal adaptations in
Drosophila. Moving forward, I will build on my current research to study the neuronal mechanisms of seasonal
plasticity and behavior. During the K99 training period, I will use available tools in Drosophila to assess the
functional and structural changes in the circadian clock neurons and aminergic circuits in response to seasonal
cues. Moreover, I will test the functional consequences of these changes by using available genetically encoded
sensors and by generating new, more sensitive, sensors to assess aminergic function in vivo under the guidance
of Dr. Lin Tian. I will expand the use of these tools in the R00 stage to determine how the interaction between
these two circuit systems modulate their functions and how they affect seasonal behavior concertedly. I believe
that the mentorship of Drs. Chiu and Tian, together with the support provided by the K99/R00 award, will allow
me to build a strong foundation that will enable my success as an independent investigator. The results of the
proposed studies will elucidate the neuronal basis underlying sensory integrations in the context of seasonal
adaptations, shedding light on the mechanisms behind seasonal modulation of health physiology and disorders.
项目概要
生物体适应环境条件的季节变化才能生存。这些调整依赖于
主要受光周期(即日长)影响,但也受温度影响。最近的研究表明
光周期变化影响涉及昼夜节律(即每天)的大脑区域的神经元组成
在称为神经递质的过程中计时并调节多巴胺能神经元的数量
交换。其他研究表明,大脑也会随着季节的变化而发生深刻的结构变化。
然而,大脑的这些功能和结构变化与季节适应之间的关系
仍然是知识上的重大差距。此外,其他相关的季节性线索,特别是温度,
对这些变化的贡献尚不清楚。该项目的总体目标是了解性质和作用
神经元可塑性整合季节线索以促进季节适应。我的假设是
季节适应是由昼夜节律神经元的功能和结构可塑性介导的
和响应环境线索的胺能电路。为了测试这一点,我提出了 3 个具体目标: 调查
(1) 生物钟神经元网络和 (2) 胺能回路的结构和功能可塑性
对季节性线索的反应及其对社交和运动行为的影响,以及(3)确定塑料如何
生物钟和胺能回路的变化调节大脑连接并编码行为
这些电路的输出。我将在遗传易处理的果蝇模型中完成这个项目,并将
利用多功能神经遗传学、高分辨率显微镜和成熟的行为学的组合
分析。
到目前为止,在加州大学戴维斯分校 Chiu 实验室的博士后生涯中,我接受了分子遗传学方面的培训
和生物化学,我用它来探索昼夜节律肽在调节季节适应中的作用
果蝇。展望未来,我将在目前的研究基础上研究季节性的神经元机制
可塑性和行为。在 K99 训练期间,我将使用 Drosophila 中可用的工具来评估
生物钟神经元和胺能回路响应季节的功能和结构变化
提示。此外,我将通过使用可用的基因编码来测试这些变化的功能后果
传感器并通过生成新的、更灵敏的传感器来评估体内胺能功能
林田博士。我将在R00阶段扩展这些工具的使用,以确定它们之间如何交互
这两个回路系统调节它们的功能以及它们如何协调地影响季节性行为。我相信
博士的指导。 Chiu 和 Tian 加上 K99/R00 奖项提供的支持,将使
我要打下坚实的基础,使我能够作为一名独立调查员取得成功。结果
拟议的研究将阐明季节性背景下感觉统合的神经元基础
适应,揭示健康生理和疾病的季节性调节背后的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergio Ignacio Hidalgo Sotelo其他文献
Sergio Ignacio Hidalgo Sotelo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
- 批准号:
10556087 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Investigation of UBQLN2 in neuronal dysfunction and ALS-FTD
UBQLN2 在神经元功能障碍和 ALS-FTD 中的研究
- 批准号:
10638277 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别: