Studies on Neuronal Development
神经元发育研究
基本信息
- 批准号:7231594
- 负责人:
- 金额:$ 19.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:26S proteasomeAddressAxonBindingBiochemicalBiochemical GeneticsBiological AssayBlood - brain barrier anatomyBrainCatalytic DomainCell Cycle ProgressionCell ExtractsCell physiologyCellsClone CellsCo-ImmunoprecipitationsComplexConfocal MicroscopyDevelopmentDiseaseDrosophila genusETS Family ProteinEquilibriumEyeGenesGeneticGoalsHistocompatibility TestingHumanImmunohistochemistryIn VitroLeadLocalizedMediatingModelingMolecularMolecular GeneticsMorulaMutationNervous system structureNeuraxisNeurobiologyNeurodegenerative DisordersNeurogliaNeuronal PlasticityNeuronsNumbersPatternPositioning AttributeProteinsRNA InterferenceRegulationRoleSignal PathwayStructureSupporting CellSystemTechniquesTestingThinkingTimeTissue ExtractsTissuesTwo-Hybrid System TechniquesUbiquitinationWorkYeastsanaphase-promoting complexbasegain of functiongenetic manipulationin vivoinsightloss of functionmutantnervous system developmentnervous system disordernovelprotein degradationresearch studyresponsesynaptogenesistissue culturetranscription factorubiquitin ligase
项目摘要
SPECIFIC AIMS
A primary goal of this proposal is to understand the molecular genetic mechanisms regulating glia
differentiation. Traditionally, glia were thought of mainly as support cells for neuronal function. In recent years,
however, it has become increasingly clear that glia are pivotal for proper neuronal development and function.
Glia mediate a remarkable array of cellular functions including axon ensheathment, establishment of blood
brain barrier, trophic response, ionic equilibrium, synaptogenesis, axon pruning, engulfment and neuronal
plasticity. To carry out these important functions, glia must themselves differentiate and function properly.
Indeed, glia malfunction often precedes neuronal/axonal degeneration in many human neurodegenerative
diseases (BAUMANN and PHAM-DINH 2001; BENARROCH 2005; FREEMAN 2005b; FREEMAN 2005c; KIM and DE
VELLIS 2005; SCHWABE et a/. 2005; SHAHAM 2005; WYSS-CORAY and MUCKE 2002).
Despite their immense importance in neurobiology, glia are remarkably understudied and the molecular genetic
mechanisms that direct the differentiation of glia are poorly understood. The developing nervous system of
Drosophila offers a superb experimental system in which to understand these mechanisms. Drosophila glia
are remarkably similar to the mammalian glia in their development, structure and function (FREEMAN and
DOHERTY 2005). In Drosophila, molecular and genetic manipulations are readily feasible and the cellular
signaling pathways that regulate nervous system development are highly conserved between Drosophila and
mammalian systems. Thus an understanding of the regulatory mechanisms that direct glia differentiation in
Drosophila will provide important insights into mammalian glia differentiation and will be invaluable in our
understanding of human neurological disorders.
The focus of our proposal is on the role of ubiquitination as a regulatory mechanism during glia differentiation.
Tagging of specific proteins for degradation by ubiquitination has emerged as an important regulatory
mechanism in nervous system development and disease. We previously identified and molecularly
characterized Rap/Fzr, an activator of the multi-subunit ubiquitin ligase, APC (Anaphase promoting complex).
Our work has shown that Rap/Fzr regulates cell cycle progression and is required for proper neuronal
patterning in the developing eye (JACOBS etal. 2002; KARPILOW et a/. 1989; KARPILOW etal. 1996; PIMENTEL
and VENKATESH 2005b).
To identify novel cellular functions of Rap/Fzr we carried out genetic studies which showed that Rap/Fzr
interacts with several genes required for glia differentiation (Kaplow et al. 2006 submitted). We have recently
made the novel observation that Rap/Fzr regulates glia differentiation by interacting with an Ets
domain transcription factor, Pointed, already known to be required for glia differentiation and with
Apc2. a catalytic subunit of the APC ubiquitin ligase. Our working hypothesis is that glia differentiation is
regulated by novel interactions involving Rap/Fzr, Pointed and Apc2. Rap/Fzr binds Pointed and targets it to
the ubiquitin ligase complex (APC), where it is ubiquitinated. Pointed is eventually degraded by the 26S
proteosome. In our model, the level of Pointed is regulated by Rap/Fzr, and is a key determinant in the
regulation of glia differentiation (Figure 1). The specific aims of this proposal are:
Specific Aim I. To test whether glia differentiation is negatively regulated by Rap/Fzr. Our preliminary
results suggest that Rap/Fzr is a negative regulator of glia differentiation, a) We will test at the cellular level
the effects of loss-of-function Rap/Fzr mutations on glia differentiation in the developing larval brain and the
eye. We will generate homozygous rap/fzr- mutant clones in a wild type tissue background using the FLP-FRT
technique, b) To directly assess the effects of Rap/Fzr loss-of-function on glia differentiation in a spatially and
temporally restricted manner, we will use RNAi and UAS-GAL4 techniques to knockdown Rap/Fzr function in
specific tissues at specific times, c) To test the effects of gain-of-function of Rap/Fzr on glia differentiation, we
will generate random clones of cells expressing Rap/Fzr, using UAS-GAL4 as well as FLP-FRT systems. We
will determine the role of Rap/Fzr in regulating the number and position of glia in the developing larval nervous
system. These experiments will address whether the Rap/Fzr function is necessary for glia differentiation in a
cell autonomous manner.
Specific aim II. To test whether Rap/Fzr regulates glia differentiation by direct interaction with Pointed:
Our working hypothesis is that Rap/Fzr targets Pointed for ubiquitination by the ubiquitin ligase APC. Pointed
is an ETS domain transcription factor which is required for glia differentiation, a) We will test whether Rap/Fzr
binds Pointed using in vitro and in vivo biochemical assays. We will use tissue extracts from larval central
nervous system (CMS) and tissue culture S2 cell extracts and assay for binding interactions between Rap/Fzr
and Pointed by co-immunoprecipitation assays, b) We will test whether Rap/Fzr and Pointed co-localize in glia
in vivo using confocal microscopy in combination with immunohistochemistry. c) We will test whether Rap/Fzr
and Pointed interact physically using yeast two-hybrid assays, d) We will perform in vitro ubiquitination assays
and test whether Pointed can serve as a substrate for ubiquitination by Rap/Fzr and APC.
Specific Aim III. To test whether Apc2/Morula regulates glia differentiation: Apc2 is the catalytic subunit
of the ubiquitin ligase complex, APC, encoded by the morula gene. Our preliminary studies suggest that Apc2
is a negative regulator of glia differentiation. To directly assess the role of Apc2 in glia differentiation at the
cellular level: a) We will test the effects of loss-of-function of APC on glia differentiation. We will induce clones
of Apc2-/Apc2- tissue in the developing larval brain and the eye and determine whether Apc2 is required cell
autonomously for glia differentiation, b) We will test the effect of loss-of-function of Apc2 on glia differentiation
using the RNAi technique, c) We will test the effects of the gain-of-function of Apc2 on glia differentiation by
generating random clones of cells expressing Apc2 using the UAS-GAL4 and the FLP-FRT techniques.
具体目标
该提案的主要目标是了解调节神经胶质细胞的分子遗传机制
差异化。传统上,神经胶质细胞主要被认为是神经元功能的支持细胞。最近几年,
然而,越来越清楚的是,神经胶质细胞对于神经元的正常发育和功能至关重要。
神经胶质细胞介导一系列显着的细胞功能,包括轴突鞘、血液的建立
脑屏障、营养反应、离子平衡、突触发生、轴突修剪、吞噬和神经元
可塑性。为了执行这些重要功能,神经胶质细胞本身必须分化并正常发挥作用。
事实上,在许多人类神经退行性疾病中,神经胶质细胞功能障碍通常先于神经元/轴突变性
疾病(BAUMANN 和 PHAM-DINH 2001;BENARROCH 2005;FREEMAN 2005b;FREEMAN 2005c;KIM 和 DE
韦利斯2005;施瓦贝等人/。 2005年;沙汉姆 2005; WYSS-CORAY 和 MUCKE 2002)。
尽管神经胶质细胞在神经生物学中非常重要,但对其的研究却非常不足,并且分子遗传学
指导神经胶质细胞分化的机制尚不清楚。正在发育的神经系统
果蝇提供了一个极好的实验系统来理解这些机制。果蝇神经胶质细胞
在发育、结构和功能上与哺乳动物神经胶质细胞非常相似(FREEMAN 和
多尔蒂 2005)。在果蝇中,分子和遗传操作是很容易实现的,并且细胞
调节神经系统发育的信号通路在果蝇和
哺乳动物系统。因此,了解指导神经胶质细胞分化的调节机制
果蝇将为哺乳动物神经胶质细胞分化提供重要的见解,并且对于我们的研究具有无价的价值。
了解人类神经系统疾病。
我们提案的重点是泛素化作为神经胶质细胞分化过程中的调节机制的作用。
标记特定蛋白质以通过泛素化降解已成为一种重要的监管手段
神经系统发育和疾病的机制。我们之前鉴定并从分子角度
Rap/Fzr 是多亚基泛素连接酶 APC(后期促进复合物)的激活剂。
我们的工作表明 Rap/Fzr 调节细胞周期进程,并且是正常神经元所必需的
发育中眼睛的图案(JACOBS 等人,2002 年;KARPILOW 等人,1989 年;KARPILOW 等人,1996 年;PIMENTEL
和 VENKATESH 2005b)。
为了鉴定 Rap/Fzr 的新细胞功能,我们进行了遗传学研究,结果表明 Rap/Fzr
与神经胶质分化所需的几个基因相互作用(Kaplow 等人,2006 年提交)。我们最近有
做出了 Rap/Fzr 通过与 Ets 相互作用来调节神经胶质细胞分化的新观察
结构域转录因子,尖头,已知是神经胶质细胞分化所必需的,并且具有
Apc2。 APC 泛素连接酶的催化亚基。我们的工作假设是神经胶质细胞分化是
受涉及 Rap/Fzr、Pointed 和 Apc2 的新颖相互作用调节。 Rap/Fzr 绑定 Pointed 并将其瞄准
泛素连接酶复合物 (APC),它被泛素化。尖头最终被26S降级
蛋白酶体。在我们的模型中,Pointed 的水平由 Rap/Fzr 调节,并且是
神经胶质分化的调节(图1)。该提案的具体目标是:
具体目的 I.测试Rap/Fzr是否负向调控胶质细胞分化。我们的初步
结果表明 Rap/Fzr 是神经胶质细胞分化的负调节因子,a) 我们将在细胞水平上进行测试
Rap/Fzr 功能丧失突变对发育中幼虫大脑神经胶质细胞分化的影响
眼睛。我们将使用 FLP-FRT 在野生型组织背景中生成纯合 rap/fzr 突变克隆
技术,b) 直接评估 Rap/Fzr 功能丧失对空间和神经胶质细胞分化的影响
在时间限制的方式下,我们将使用 RNAi 和 UAS-GAL4 技术来敲低 Rap/Fzr 功能
c) 为了测试 Rap/Fzr 功能获得对神经胶质细胞分化的影响,我们
将使用 UAS-GAL4 以及 FLP-FRT 系统生成表达 Rap/Fzr 的细胞的随机克隆。我们
将决定 Rap/Fzr 在调节发育中的幼虫神经胶质细胞的数量和位置中的作用
系统。这些实验将解决 Rap/Fzr 功能对于神经胶质细胞分化是否是必需的。
细胞自主方式。
具体目标二.为了测试 Rap/Fzr 是否通过与 Pointed 直接相互作用来调节神经胶质细胞分化:
我们的工作假设是 Rap/Fzr 的目标是被泛素连接酶 APC 泛素化。尖
是神经胶质分化所需的 ETS 结构域转录因子,a) 我们将测试 Rap/Fzr 是否
使用体外和体内生化测定结合Pointed。我们将使用幼虫中央的组织提取物
神经系统 (CMS) 和组织培养 S2 细胞提取物以及 Rap/Fzr 之间结合相互作用的测定
和通过免疫共沉淀测定指出,b) 我们将测试 Rap/Fzr 和 Pointed 是否在神经胶质细胞中共定位
使用共聚焦显微镜与免疫组织化学相结合进行体内实验。 c) 我们将测试 Rap/Fzr 是否
使用酵母二杂交检测进行物理上的 Pointed 相互作用,d) 我们将进行体外泛素化检测
并测试Pointed是否可以作为Rap/Fzr和APC泛素化的底物。
具体目标 III.测试 Apc2/Morula 是否调节胶质细胞分化:Apc2 是催化亚基
桑葚基因编码的泛素连接酶复合物 APC。我们的初步研究表明 Apc2
是神经胶质分化的负调节因子。直接评估 Apc2 在神经胶质细胞分化中的作用
细胞水平:a) 我们将测试 APC 功能丧失对神经胶质细胞分化的影响。我们将诱导克隆
发育中的幼虫大脑和眼睛中的 Apc2-/Apc2- 组织,并确定 Apc2 是否是必需的细胞
自主进行神经胶质分化,b) 我们将测试 Apc2 功能丧失对神经胶质分化的影响
使用 RNAi 技术,c) 我们将测试 Apc2 功能获得对神经胶质细胞分化的影响
使用 UAS-GAL4 和 FLP-FRT 技术生成表达 Apc2 的细胞的随机克隆。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TADMIRI Rangachar VENKATESH其他文献
TADMIRI Rangachar VENKATESH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TADMIRI Rangachar VENKATESH', 18)}}的其他基金
CONFOCAL MICROSCOPE: NEUROSCIENCE, VISUAL NEURON
共焦显微镜:神经科学,视觉神经元
- 批准号:
7166342 - 财政年份:2005
- 资助金额:
$ 19.52万 - 项目类别:
CONFOCAL MICROSCOPE: VOCAL LEARNING, ANGELMAN'S SYNDROME, DOWN SYNDROME
共焦显微镜:发声学习、天使综合症、唐氏综合症
- 批准号:
7166343 - 财政年份:2005
- 资助金额:
$ 19.52万 - 项目类别:
PROTEASE INHIBITOR EFFECTS IN EPITHELIAL TRANSFORMATION
蛋白酶抑制剂对上皮转化的影响
- 批准号:
6271638 - 财政年份:1997
- 资助金额:
$ 19.52万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
- 批准号:
10752553 - 财政年份:2024
- 资助金额:
$ 19.52万 - 项目类别:
Plasma neurofilament light chain as a potential disease monitoring biomarker in Wolfram syndrome
血浆神经丝轻链作为 Wolfram 综合征潜在疾病监测生物标志物
- 批准号:
10727328 - 财政年份:2023
- 资助金额:
$ 19.52万 - 项目类别:
Characterization of cortical neuronal subtypes in cocaine self-administration
可卡因自我给药皮质神经元亚型的特征
- 批准号:
10815221 - 财政年份:2023
- 资助金额:
$ 19.52万 - 项目类别:
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
$ 19.52万 - 项目类别:
Investigating the cellular and molecular mechanisms of lower-chlorinated polychlorinated biphenyl developmental neurotoxicity
研究低氯多氯联苯发育神经毒性的细胞和分子机制
- 批准号:
10678135 - 财政年份:2023
- 资助金额:
$ 19.52万 - 项目类别: