Transrectal Imaging of Prostate Cancer Using a Globally Convergent Method

使用全局收敛方法进行前列腺癌经直肠成像

基本信息

  • 批准号:
    8092622
  • 负责人:
  • 金额:
    $ 30.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): While many technologies for medical imaging are advanced, no simple and accurate imaging tool exists to guide early detection, tissue biopsy and optimal treatment for prostate cancer. More research and technology development are needed to explore reliable and quantitative imaging means for improved prostate cancer screening, diagnosis and prognosis. The overall hypothesis for this R01 proposal is that a novel Globally Convergent Method in combination with a transrectal, multi-channel optical imaging system can be developed and used in vivo for transrectal detection and diagnosis of prostate cancer in human. The Specific Aims are: Aim 1: develop and validate a globally convergent method (GCM) to obtain 2-dimentional (2- D) reconstructed images of optical parameters (both absorption and scattering parameters) that are characteristic of human prostate cancer. Aim 2: design, implement, and validate a transrectal, multi-channel optical imaging system that can be used to measure optical signals from human prostate glands for non-invasive or minimally invasive prostate cancer diagnosis or/and screen. Aim 3(a): experimentally validate the developed 2-D GCM using human prostate-like tissue phantoms so that appropriate refinement, modification, or calibration can be explored to improve both theoretical accuracy and experimental designs. Aim 3(b): perform optical imaging measurements on ex vivo human prostate glands, which are removed from patients during prostatectomy, and compare with histology results to validate the newly developed 2-D GCM. Aim 3(c): validate the 2-D GCM and transrectal imaging system by performing in vivo human prostate measurements during prostatectomy. The optical measurements will be carried out transrectally in the beginning of the surgery before the prostate is removed and then taken again on the same ex vivo prostate gland. Comparison between the in vivo and ex vivo results will be made and utilized for improvement of the 2-D GCM and transrectal imaging system. This proposed project is a feasibility study. We wish to show that the GCM is a direct and fast imaging reconstruction algorithm with proven mathematical foundation, leading to an economic and practical NIR imager for prostate cancer detection. Also, by combining the optical tomographic imaging technique with the novel design of transrectal optical probes, the research team has a unique opportunity to obtain optical and physiological signatures of prostate cancer in human, which will enable proper planning of a future trial with a statistically significant number of subjects. The long-term goal is to utilize optically derived signatures as finger-prints of prostate cancer to diagnose the cancer in the future. PUBLIC HEALTH RELEVANCE: While many technologies for medical imaging are advanced, there is no accurate imaging and diagnostic tool to guide early detection, tissue biopsy and optimal treatment for prostate cancer. More research and technology development are greatly needed for improved prostate cancer screening and prognosis. It would be highly desirable to develop a low-cost, quantitative, transrectal imaging system that allows routine, early, and accurate screen and detection for prostate cancer. The proposed project is a feasibility study to investigate a novel mathematical method that can be used along with a transrectal imaging system for early detection of prostate cancer. The developed mathematical tool will provide two-dimensional, tomographic images for human prostate cancer testing.
描述(由申请人提供):虽然许多医学成像技术都很先进,但不存在简单而准确的成像工具来指导前列腺癌的早期检测、组织活检和最佳治疗。需要更多的研究和技术开发来探索可靠和定量的成像手段,以改善前列腺癌的筛查、诊断和预后。该 R01 提案的总体假设是,可以开发一种新颖的全局收敛方法与经直肠多通道光学成像系统相结合,并用于体内经直肠检测和诊断人类前列腺癌。具体目标是: 目标 1:开发并验证全局收敛方法 (GCM),以获得人类前列腺癌特征的光学参数(吸收参数和散射参数)的二维 (2-D) 重建图像。目标 2:设计、实现和验证经直肠、多通道光学成像系统,该系统可用于测量人类前列腺的光学信号,以进行无创或微创前列腺癌诊断或/和筛查。目标 3(a):使用人类前列腺样组织模型对开发的 2-D GCM 进行实验验证,以便探索适当的细化、修改或校准,以提高理论准确性和实验设计。目标 3(b):对在前列腺切除术期间从患者体内摘除的离体人类前列腺进行光学成像测量,并与组织学结果进行比较,以验证新开发的 2-D GCM。目标 3(c):通过在前列腺切除术期间进行体内人体前列腺测量来验证 2-D GCM 和经直肠成像系统。光学测量将在手术开始时经直肠进行,然后切除前列腺,然后在同一离体前列腺上再次进行测量。将进行体内和离体结果之间的比较,并将其用于改进 2-D GCM 和经直肠成像系统。该拟议项目是一项可行性研究。我们希望证明 GCM 是一种直接、快速的成像重建算法,具有经过验证的数学基础,为前列腺癌检测提供经济实用的近红外成像仪。此外,通过将光学断层成像技术与经直肠光学探针的新颖设计相结合,研究团队获得了获得人类前列腺癌的光学和生理特征的独特机会,这将有助于正确规划未来具有统计显着性的试验。科目数量。长期目标是利用光学衍生特征作为前列腺癌的指纹来诊断未来的癌症。 公共健康相关性:虽然许多医学成像技术都很先进,但没有准确的成像和诊断工具来指导前列腺癌的早期检测、组织活检和最佳治疗。迫切需要更多的研究和技术开发来改善前列腺癌筛查和预后。非常需要开发一种低成本、定量、经直肠成像系统,允许对前列腺癌进行常规、早期和准确的筛查和检测。拟议的项目是一项可行性研究,旨在研究一种新颖的数学方法,该方法可与经直肠成像系统一起用于前列腺癌的早期检测。开发的数学工具将为人类前列腺癌检测提供二维断层扫描图像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HANLI LIU其他文献

HANLI LIU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HANLI LIU', 18)}}的其他基金

Digital biomarkers for Alzheimer's Disease with compact dual-mode brain sensing
具有紧凑型双模式脑传感功能的阿尔茨海默病数字生物标记
  • 批准号:
    10526163
  • 财政年份:
    2022
  • 资助金额:
    $ 30.33万
  • 项目类别:
Transrectal Imaging of Prostate Cancer Using a Globally Convergent Method
使用全局收敛方法进行前列腺癌经直肠成像
  • 批准号:
    7993002
  • 财政年份:
    2010
  • 资助金额:
    $ 30.33万
  • 项目类别:
Transrectal Imaging of Prostate Cancer Using a Globally Convergent Method
使用全局收敛方法进行前列腺癌经直肠成像
  • 批准号:
    8257562
  • 财政年份:
    2010
  • 资助金额:
    $ 30.33万
  • 项目类别:
Computational Optical Tomography for Anti-stroke Therapy (R21/R33)
用于抗中风治疗的计算光学断层扫描 (R21/R33)
  • 批准号:
    8068183
  • 财政年份:
    2007
  • 资助金额:
    $ 30.33万
  • 项目类别:
Computational Optical Tomography for Anti-stroke Therapy (R21/R33)
用于抗中风治疗的计算光学断层扫描 (R21/R33)
  • 批准号:
    7861439
  • 财政年份:
    2007
  • 资助金额:
    $ 30.33万
  • 项目类别:
Computational Optical Tomography for Anti-stroke Therapy (R21/R33)
用于抗中风治疗的计算光学断层扫描 (R21/R33)
  • 批准号:
    7871869
  • 财政年份:
    2007
  • 资助金额:
    $ 30.33万
  • 项目类别:
Computational Optical Tomography for Anti-stroke Therapy (R21/R33)
用于抗中风治疗的计算光学断层扫描 (R21/R33)
  • 批准号:
    7196014
  • 财政年份:
    2007
  • 资助金额:
    $ 30.33万
  • 项目类别:
Computational Optical Tomography for Anti-stroke Therapy (R21/R33)
用于抗中风治疗的计算光学断层扫描 (R21/R33)
  • 批准号:
    7876835
  • 财政年份:
    2007
  • 资助金额:
    $ 30.33万
  • 项目类别:
Computational Optical Tomography for Anti-stroke Therapy (R21/R33)
用于抗中风治疗的计算光学断层扫描 (R21/R33)
  • 批准号:
    7433840
  • 财政年份:
    2007
  • 资助金额:
    $ 30.33万
  • 项目类别:
Hemodynamic Imaging for Brain Tumor Prognosis
血流动力学成像用于脑肿瘤的预后
  • 批准号:
    6767758
  • 财政年份:
    2003
  • 资助金额:
    $ 30.33万
  • 项目类别:

相似国自然基金

面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
颜面缺损修复三维目标参照数据构建的区域权重非刚性配准算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 30.33万
  • 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
  • 批准号:
    10752053
  • 财政年份:
    2023
  • 资助金额:
    $ 30.33万
  • 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
  • 批准号:
    10659007
  • 财政年份:
    2023
  • 资助金额:
    $ 30.33万
  • 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
  • 批准号:
    10698965
  • 财政年份:
    2023
  • 资助金额:
    $ 30.33万
  • 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 30.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了