Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
基本信息
- 批准号:8016421
- 负责人:
- 金额:$ 37.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-15 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAxonBacteriaBacteriorhodopsinsBiologicalBiologyBlinkingCardiacCell membraneCellsCodon NucleotidesColorCommunicationCustomDiseaseDreamsDyesElectrophysiology (science)EngineeringErythrocytesEscherichia coliFire - disastersFluorescenceGenerationsGeneticGoalsHalorhodopsinsHealthHumanImageIn VitroIntegral Membrane ProteinLabelLeadLibrariesLifeLightMeasuresMembraneMembrane PotentialsMicrobial RhodopsinsMitochondriaMolecular ProbesMutagenesisNeurogliaNeuronsOpticsPhysiologicalPoint MutationPositioning AttributePropertyProtein EngineeringProteinsProton PumpProton-Motive ForceProtonsRelative (related person)RestRetinalRhodopsinRunningSignal TransductionSpeedSunlightSystemTimeWorkZebrafishabsorptionanalogbasecellular imagingchromophoredesignfunctional groupimprovedin vivoinsightmutantnovelquantumresponsesensorsensory rhodopsin Itoolvoltage
项目摘要
DESCRIPTION (provided by applicant): Engineering Microbial Rhodopsins as Optical Voltage Sensors Neuroscientists have long dreamed of a genetically encoded sensor that gives an optical signal in response to a change in membrane potential, with the goal of imaging electrical activity of neurons in vivo. Such a molecule could also be used to probe membrane potentials in mitochondria, cardiac cells, bacteria, or in other non-neuronal cells, and thus would provide a new window into the physiological states of a wide range of cells implicated in human health and disease. We propose to engineer a fluorescent transmembrane protein whose fluorescence is sensitive to membrane potential. The goal is to visualize a single action potential in vivo. Many groups have sought to attain this goal; our approach is entirely different from previous efforts. Our starting material is a microbial rhodopsin protein called green proteorhodopsin (GPR). In the wild, this protein absorbs sunlight and pumps protons to generate a proton motive force. We will engineer the protein to run backward-to use membrane voltage to modulate light. The retinal chromophore in wild-type microbial rhodopsins is sufficiently fluorescent for single-cell imaging. GPR can be expressed and imaged in zebra fish neurons in vitro and in living zebra fish. A single-point mutation to GPR leads to a protein whose fluorescence is exquisitely sensitive to membrane potential. The essence of the idea is to use membrane potential to pull a proton toward or away from a color- determining functional group in the protein. When the cell is at rest, this functional group is deprotonated and the protein is dark. When the cell fires an action potential, a proton is forced onto this functional group and the protein becomes bright. Just as GFP revolutionized biology through its ability to track the positions of proteins in cells, we believe that microbial rhodopsins will have a broad impact through their ability to label biological membranes, and to transduce membrane potential into changes in fluorescence.
PUBLIC HEALTH RELEVANCE: Many cell membranes maintain a voltage difference across the membrane, which is used for communication (in neurons), and for generation of energy (in bacteria and mitochondria). Our goal is to develop a protein that when expressed in a cell gives a visible readout of the membrane potential. This protein will facilitate studies on the electrophysiology of a wide range of cells implicated in human health and disease.
描述(由申请人提供):将微生物视紫红质工程化为光学电压传感器神经科学家长期以来一直梦想着一种基因编码传感器,能够响应膜电位的变化而发出光学信号,其目标是对体内神经元的电活动进行成像。这种分子还可用于探测线粒体、心肌细胞、细菌或其他非神经元细胞中的膜电位,从而为了解与人类健康和疾病有关的多种细胞的生理状态提供新的窗口。 我们建议设计一种荧光跨膜蛋白,其荧光对膜电位敏感。目标是可视化体内单个动作电位。许多团体都在努力实现这一目标;我们的方法与以前的努力完全不同。 我们的起始材料是一种称为绿色蛋白视紫红质(GPR)的微生物视紫红质蛋白。在野外,这种蛋白质吸收阳光并泵送质子以产生质子动力。我们将设计蛋白质使其反向运行,以利用膜电压来调制光。野生型微生物视紫红质中的视网膜发色团对于单细胞成像来说具有足够的荧光。 GPR 可以在体外斑马鱼神经元和活体斑马鱼中表达和成像。 GPR 的单点突变导致蛋白质的荧光对膜电位极其敏感。 这个想法的本质是利用膜电位将质子拉向或远离蛋白质中的颜色决定官能团。当细胞处于静止状态时,该官能团被去质子化,并且蛋白质呈黑色。当细胞激发动作电位时,质子被迫进入该官能团,蛋白质变得明亮。 正如 GFP 通过追踪细胞中蛋白质位置的能力彻底改变了生物学一样,我们相信微生物视紫红质将通过其标记生物膜以及将膜电位转换为荧光变化的能力产生广泛的影响。
公共健康相关性:许多细胞膜维持跨膜电压差,用于通信(在神经元中)和产生能量(在细菌和线粒体中)。我们的目标是开发一种蛋白质,当在细胞中表达时,可以提供膜电位的可见读数。这种蛋白质将有助于对与人类健康和疾病有关的多种细胞的电生理学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(10)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Ezra Cohen其他文献
Adam Ezra Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Ezra Cohen', 18)}}的其他基金
Protein ticker-tapes for brain-wide neural recordings
用于全脑神经记录的蛋白质自动收报机磁带
- 批准号:
10598626 - 财政年份:2022
- 资助金额:
$ 37.14万 - 项目类别:
Protein ticker-tapes for brain-wide neural recordings
用于全脑神经记录的蛋白质自动收报机磁带
- 批准号:
10399721 - 财政年份:2022
- 资助金额:
$ 37.14万 - 项目类别:
Two-photon all-optical electrophysiology in behaving mice
行为小鼠的双光子全光电生理学
- 批准号:
10401180 - 财政年份:2022
- 资助金额:
$ 37.14万 - 项目类别:
Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
- 批准号:
8588923 - 财政年份:2010
- 资助金额:
$ 37.14万 - 项目类别:
Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
- 批准号:
8401906 - 财政年份:2010
- 资助金额:
$ 37.14万 - 项目类别:
Optical sensing of voltage, pH, and small molecules using microbial rhodopsins
使用微生物视紫红质对电压、pH 和小分子进行光学传感
- 批准号:
7981713 - 财政年份:2010
- 资助金额:
$ 37.14万 - 项目类别:
Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
- 批准号:
8204780 - 财政年份:2010
- 资助金额:
$ 37.14万 - 项目类别:
相似国自然基金
帕金森病轴突损伤中组蛋白乳酸化的作用及机制研究
- 批准号:82301604
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
施旺细胞-神经元乳酸代谢稳态通过蛋白质乳酸化调控轴突再生的作用研究
- 批准号:32300648
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于轴突密度纵向分析智力障碍患儿语言功能康复中双流语言网络可塑性机制的MRI-NODDI研究
- 批准号:82360337
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
异丙酚促进STX3/PTEN介导DG-Glu能神经元轴突发生提高发育脑认知功能的机制研究
- 批准号:82301354
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Mical3调控轴突起始段Tau蛋白弥散屏障重塑在慢性创伤性脑病中的作用及机制研究
- 批准号:82371381
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A new animal model to examine nervous system function, development, and regeneration
一种检查神经系统功能、发育和再生的新动物模型
- 批准号:
10312114 - 财政年份:2020
- 资助金额:
$ 37.14万 - 项目类别:
A New Animal Model to Examine Nervous System Function Development and Regeneration
一种检查神经系统功能发育和再生的新动物模型
- 批准号:
10703706 - 财政年份:2020
- 资助金额:
$ 37.14万 - 项目类别:
Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
- 批准号:
8588923 - 财政年份:2010
- 资助金额:
$ 37.14万 - 项目类别:
Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
- 批准号:
8401906 - 财政年份:2010
- 资助金额:
$ 37.14万 - 项目类别:
Engineering Microbial Rhodopsins as Optical Voltage Sensors
将微生物视紫红质工程化为光学电压传感器
- 批准号:
8204780 - 财政年份:2010
- 资助金额:
$ 37.14万 - 项目类别: