Implantable Biodegradable RF-Powered Tissue Stimulator and Electrodes
植入式可生物降解射频供电组织刺激器和电极
基本信息
- 批准号:8241552
- 负责人:
- 金额:$ 23.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlloysAnimalsArtificial cardiac pacemakerBiocompatibleBody FluidsBone TissueCell ProliferationCellsChildClinicalConsultCorrosionCosmeticsCouplingDataDevelopmentDevicesDrug Delivery SystemsElectric StimulationElectrochemistryElectrodesElectronicsEvaluationExcisionFractureFrequenciesGoalsGuidelinesHistocompatibilityImageImplantIn VitroInfectionLeftLifeLife Cycle StagesMagnesiumMedical DeviceMethodsModelingMonitorMusculoskeletal PhysiologyNatural regenerationNerveNormal tissue morphologyOperative Surgical ProceduresOryctolagus cuniculusPain managementPostoperative PainPower SourcesRadioRattusResearchResourcesServicesSimulateSpinalSpinal FusionStem cellsSurgeonSystemSystems DevelopmentTechnologyTestingTherapeuticTimeTissue EngineeringTissuesTitaniaTitaniumWireless Technologybasebiomaterial compatibilitybonebone marrow stromal stem celldesignimplantable deviceimplantationin vivonovelnovel strategiesosteoblast differentiationplatinum electrodereconstructionrepairedresearch studyresponsesubcutaneoustechnology development
项目摘要
DESCRIPTION (provided by applicant): Implantable biodegradable electronic devices for medical applications offer the potential to provide therapeutic or monitoring functions for limited periods of time - weeks to months - degrading in register with the anticipated needs of the application and thus not requiring surgical removal. However, numerous technologies remain to be developed to enable practical biodegradable electronic systems. The goal of this R21 is to develop completely biodegradable radio frequency (RF) power generators and stimulating electrodes as novel platform technology for enabling a variety of surgically implantable biodegradable electronic devices. The generators and electrodes will be designed according to electrical specifications and forms that are compatible with their incorporation into a biodegradable spinal fusion stimulator as a paradigm application of this technology. Our novel approach will be to use RF coil circuits based on biocompatible and bioresorbable magnesium alloy conductive and resistive components, and also use this same alloy as the material for the electrodes. Using the electrical specifications of existing, non-degradable spinal fusion stimulators in clinical use for guidelines, we will design, fabricate, and test RF coil circuits and stimulating electrodes to deliver constant current stimulation. Stem cell proliferative and differentiative responses to the stimulating electrodes will be assessed in vitro and compared with responses to conventional non-degradable electrodes. Pilot experiments to assess electrode degradation and tissue compatibility will be assessed in vivo in a tethered hard-wired subcutaneous rat model. Functionality and coupling efficiency of the RF coil circuit will be assessed in vitro in simulated body fluid. Successful completion of these aims, as demonstrated by confirming predicted cellular responses and component functionalities over time, will establish the basis for follow-on research addressing component optimizations and complete system development, including integration with active electronics, and testing in an animal spinal fusion model.
PUBLIC HEALTH RELEVANCE: The objective of this study to demonstrate feasibility of key components for implantable biodegradable electronic devices that need only function temporarily, such as an electrical stimulator for spinal fusion, or in more general terms, for stimulating repair and remodeling of tissue engineered constructs, fractures, or grafts. This technology would make electrical stimulation a more practical and acceptable therapeutic option by overcoming the barriers to clinical acceptance of permanent implants that only need to function for relatively short periods of time after implantation and may require surgical removal at the end of their service life.
描述(由申请人提供):用于医疗应用的可植入可生物降解的电子设备提供了在有限的时间内 - 每周至几个月内提供治疗或监测功能的潜力 - 在申请的预期需求中降级,因此不需要手术去除。但是,仍有许多技术要开发以实现可实现的可生物降解电子系统。 R21的目的是开发完全可生物降解的射频(RF)发电机,并刺激电极作为新型平台技术,以实现各种外科手术可植入的可生物降解的电子设备。发电机和电极将根据电气规格和形式设计,它们与它们合并到可生物降解的脊柱融合刺激器中,以作为该技术的范式应用。我们的新方法是使用基于生物相容性和可生物吸收的镁合金导电和电阻成分的RF线圈电路,还使用该合金与电极的材料相同。使用现有的,不可降解的脊柱融合刺激剂的电气规格,用于指南,我们将设计,制造和测试RF线圈电路和刺激电极以提供恒定的电流刺激。对刺激电极的干细胞增殖和分化反应将在体外评估,并与对常规不可降解电极的反应进行比较。评估电极降解和组织兼容性的试验实验将在束缚硬连线皮下大鼠模型中进行体内评估。 RF线圈电路的功能和耦合效率将在模拟的体液中评估。通过确认预测的细胞响应和随着时间的推移的组件功能证明,这些目标的成功完成将为解决组件优化和完整的系统开发(包括与主动电子设备的集成以及在动物脊柱融合模型中的测试)建立基础。
公共卫生相关性:这项研究的目的是证明仅需要暂时起作用的可植入生物降解的电子设备的关键组件的可行性,例如用于脊柱融合的电刺激器,或以更一般的术语来刺激组织工程构建体,裂缝,裂缝或握把的刺激修复和重塑。这项技术将通过克服临床接受永久性植入物的障碍,使电刺激成为更实用和可接受的治疗选择,而永久性植入物的障碍只需要在植入后相对较短的时间内发挥作用,并且可能需要在其使用寿命结束时进行手术清除。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHIL GORDON CAMPBELL其他文献
PHIL GORDON CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHIL GORDON CAMPBELL', 18)}}的其他基金
Clickable Extracellular Vesicles to Silk-Based Biomaterials for Regenerative Medicine
用于再生医学的可点击细胞外囊泡到丝基生物材料
- 批准号:
10642420 - 财政年份:2023
- 资助金额:
$ 23.22万 - 项目类别:
Implantable Biodegradable RF-Powered Tissue Stimulator and Electrodes
植入式可生物降解射频供电组织刺激器和电极
- 批准号:
8327170 - 财政年份:2011
- 资助金额:
$ 23.22万 - 项目类别:
Cell Response to 3D Engineered Gradients of FGF-2
细胞对 FGF-2 3D 工程梯度的反应
- 批准号:
7060419 - 财政年份:2005
- 资助金额:
$ 23.22万 - 项目类别:
Cell Response to 3D Engineered Gradients of FGF-2
细胞对 FGF-2 3D 工程梯度的反应
- 批准号:
6851399 - 财政年份:2005
- 资助金额:
$ 23.22万 - 项目类别:
相似国自然基金
高精度芯片刻蚀机用铝合金抗等离子体腐蚀涂层的研究
- 批准号:52371057
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高温合金叶片气膜冷却孔重熔层微电池区诱导超声空化磨料抛光机理
- 批准号:52375460
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Mo与Kovar合金高熵强韧化电子束焊接及界面调控机理研究
- 批准号:52375322
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面心立方高熵合金低温电磁成形机理
- 批准号:52371025
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
FeCrAl合金“双细组织”构建及其辐照自修复机理研究
- 批准号:12375257
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 23.22万 - 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
- 批准号:
10517496 - 财政年份:2020
- 资助金额:
$ 23.22万 - 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
- 批准号:
10304119 - 财政年份:2020
- 资助金额:
$ 23.22万 - 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
- 批准号:
9885472 - 财政年份:2020
- 资助金额:
$ 23.22万 - 项目类别:
Micro-invasive biochemical sampling of brain interstitial fluid for investigating neural pathology
脑间质液微创生化取样用于研究神经病理学
- 批准号:
10090597 - 财政年份:2020
- 资助金额:
$ 23.22万 - 项目类别: