A Mass Spectrometry Probe for Transient Imaging of In-Solution Biochemistry

用于溶液内生物化学瞬态成像的质谱探针

基本信息

  • 批准号:
    8162751
  • 负责人:
  • 金额:
    $ 17.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Quite frequently in biomedical research there is a need to detect and monitor dynamic chemistries in solution in the vicinity of an interface. For instance, many studies focus on detection of chemical secretions from cultured tissues or cells into the surrounding medium. Often, such applications place specific demands on the required spatial and temporal resolution of the detection method. When monitoring secretions this would be due to heterogeneity in the cell types and behavior, and also variation in cellular activities with time. Labeling, with, for instance, a fluorescent marker, a radioactive marker, or using antigen/ antibody attachment, has been spectacularly successful as the foundation for imaging dynamic biochemistry, but concerns about the altering of labeled analyte behavior and non-specific binding cannot be eliminated. Furthermore, all targeted methods, including those based on labeling, are inherently limited in their discovery potential, as one cannot find what one is not looking for. The purpose of the proposed research is to overcome the inherent limitations of current biochemical imaging technologies. This will be done through the development of electrospray ion sources that can serve as mass spectrometry probes (MSP) for highly resolved biochemical detection from the microenvironment adjacent to biological interfaces. The research team has a demonstrated history of success inventing novel mass spectrometry ion sources, and proposes, for this project, to accomplish the ambitious task of combining all prerequisite capabilities for sample collection, processing, and ionization into a micro- sampling capillary. This "lab-on-a-tip" will include in-line microdialysis to remove salts and exchange solvent, as well as an integrated tryptic digestion micro-reactor. The research team will develop, optimize and demonstrate MSP through an established multifaceted approach combining experiment (including optical and mass spec characterization), analysis and simulation (first principles physical models and computational fluid dynamics), and state of the art manufacturing (microfabrication). MSP will assume an important role in biological research as a hypothesis generator, and will become a key tool in improving development of bioreactors for regenerative medicine applications. Successful results have potential for transformational benefits to a wide range of research applications, including biomarker discovery, improved understanding of healthy and diseased cell biology, biosensor development, and bio-manufacturing process analysis and control. In addition to presentation at conferences and publication in archival journals, the application of MSP technology to biological problems will be disseminated through an educational workshop hosted at Ga. Tech. Furthermore, the probe will be coupled to a TOF mass spectrometer that is part of the NSF supported National Nanotechnology Infrastructure Network (NNIN), and therefore available to users from industry and academic institutions alike. PUBLIC HEALTH RELEVANCE (provided by applicant): In this application, we propose to develop an ambient Mass Spectrometry Probe (MSP), which passively samples and softly ionizes large biomolecules directly from liquid at physiological conditions, and thus makes possible transient mass spectrometric monitoring at precisely controlled locations in a complex liquid environment, with MS spectra collected as a function of time. The resulting capability to directly monitor biochemistry in physiologically relevant solution conditions will enable biologists, biochemists, and bioengineers to spatially correlate chemical data with high precision, not only for the generation of clear chemical "images" of in vitro cultures, but also for the investigation of the role of heterogeneity and gradients in numerous important applications, including bio reactors for regenerative medicine, activity and behavior of bioengineered materials, and biosensor characterization. MSP will assume an important role in biological research as a hypothesis generator, and has the potential for transformational benefits to a wide range of research endeavors, including biomarker discovery, investigations of healthy and diseased cell biology, biosensor development, and bio-manufacturing process analysis and control.
描述(由申请人提供):在生物医学研究中,经常需要检测和监测界面附近溶液中的动态化学。例如,许多研究集中于检测从培养的组织或细胞中的化学分泌物中的检测到周围的培养基。通常,此类应用程序对检测方法所需的空间和时间分辨率提出了特定的要求。监测分泌物时,这将是由于细胞类型和行为的异质性以及随时间的细胞活性变化所致。标记,例如,荧光标记,放射性标记或使用抗原/抗体附着的标记,作为成像动态生物化学的基础取得了惊人的成功,但无法消除对标记分析的行为和非特异性结合的改变的关注。此外,所有有针对性的方法(包括基于标签的方法)在发现潜力上固有地受到限制,因为人们找不到一个人不需要的方法。拟议的研究的目的是克服当前生化成像技术的固有局限性。这将通过开发电喷雾离子源来完成,这些电源离子源可以用作质谱探针(MSP),用于从与生物界面相邻的微环境中高度分辨的生化检测。研究团队有一个成功发明新型质谱离子来源的历史,并建议该项目完成雄心勃勃的任务,即将所有先决条件的能力相结合,以收集样品,处理和电离为微样本采样毛细管。此“实验室”提示将包括在线微透析,以去除盐和交换溶剂,以及集成的胰蛋白酶消化微反应器。研究团队将通过建立的多方面方法(包括光学和质量表征),分析和仿真(第一原理物理模型和计算流体动力学)以及最先进的制造(微型制造)来开发,优化和演示MSP。 MSP将在生物学研究中作为假设发生器扮演重要角色,并将成为改善再生医学应用生物反应器开发的关键工具。成功的结果有可能对广泛的研究应用具有变革益处的潜力,包括生物标志物发现,对健康和患病细胞生物学的了解,生物传感器开发以及生物制造过程分析和控制。除了在档案期刊上的会议和出版物上演讲外,MSP技术在生物学问题上的应用还将通过GA。Tech的教育研讨会传播。此外,该探测器将耦合到TOF质谱仪,该质谱仪是NSF支持的国家纳米技术基础设施网络(NNIN)的一部分,因此可供行业和学术机构的用户使用。 公共卫生相关性(由申请人提供):在本申请中,我们建议开发环境质谱探针(MSP),该探针(MSP)在生理条件下直接从液体中直接从液体中柔软地将大型生物分子柔和地使大型生物分子在生理条件下从液体下进行,因此可以在复杂的液体环境中精确地进行与MS Spectra perpsipra cluctra coldice cormation -as a -as a -suffor -as a -a Saper -afor -afor -affimains formiqu formiquy promimains -aformiquy promiption formiqu aformiquy。在生理相关的溶液条件下直接监测生物化学的最终能力将使生物学家,生物化学家和生物工程师能够在空间上与化学数据与高精度相关,而不仅仅是体外培养的透明化学“图像”的产生,还可以在许多重要的培养基中,包括在许多重要的培训中,包括Biio Readors,包括Biio Readors的作用,包括Biio Readors的作用。材料和生物传感器表征。 MSP将在生物学研究中扮演重要的作用,作为假设发生器,并有可能对广泛的研究努力进行转化益处,包括生物标志物发现,对健康和患病的细胞生物学的研究,生物传感器开发以及生物制造过程分析和控制。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microfabricated ultrarapid desalting device for nanoelectrospray ionization mass spectrometry.
  • DOI:
    10.1021/ac5040083
  • 发表时间:
    2015-01-06
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Tibavinsky, Ivan A.;Kottke, Peter A.;Fedorov, Andrei G.
  • 通讯作者:
    Fedorov, Andrei G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREI G FEDOROV其他文献

ANDREI G FEDOROV的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREI G FEDOROV', 18)}}的其他基金

BeamMap: Ultra-High Resolution Topological and Chemical Imaging with Synergistic Liquid and Electron Beams
BeamMap:使用协同液体和电子束进行超高分辨率拓扑和化学成像
  • 批准号:
    10439918
  • 财政年份:
    2020
  • 资助金额:
    $ 17.72万
  • 项目类别:
BeamMap: Ultra-High Resolution Topological and Chemical Imaging with Synergistic Liquid and Electron Beams
BeamMap:使用协同液体和电子束进行超高分辨率拓扑和化学成像
  • 批准号:
    10029717
  • 财政年份:
    2020
  • 资助金额:
    $ 17.72万
  • 项目类别:
BeamMap: Ultra-High Resolution Topological and Chemical Imaging with Synergistic Liquid and Electron Beams
BeamMap:使用协同液体和电子束进行超高分辨率拓扑和化学成像
  • 批准号:
    10251247
  • 财政年份:
    2020
  • 资助金额:
    $ 17.72万
  • 项目类别:
BEAMMAP: ULTRA-HIGH RESOLUTION TOPOLOGICAL AND CHEMICAL IMAGING WITH SYNERG
BEAMMAP:使用 SYNERG 进行超高分辨率拓扑和化学成像
  • 批准号:
    10581771
  • 财政年份:
    2020
  • 资助金额:
    $ 17.72万
  • 项目类别:
DRILL: Droplet Desolvation and Ion Transmission Interface for Mass Spectrometry
DRILL:用于质谱分析的液滴去溶剂化和离子传输接口
  • 批准号:
    9315888
  • 财政年份:
    2014
  • 资助金额:
    $ 17.72万
  • 项目类别:
DRILL: Droplet Desolvation and Ion Transmission Interface for Mass Spectrometry
DRILL:用于质谱分析的液滴去溶剂化和离子传输接口
  • 批准号:
    8800094
  • 财政年份:
    2014
  • 资助金额:
    $ 17.72万
  • 项目类别:
DRILL: Droplet Desolvation and Ion Transmission Interface for Mass Spectrometry
DRILL:用于质谱分析的液滴去溶剂化和离子传输接口
  • 批准号:
    8927665
  • 财政年份:
    2014
  • 资助金额:
    $ 17.72万
  • 项目类别:
A Mass Spectrometry Probe for Transient Imaging of In-Solution Biochemistry
用于溶液内生物化学瞬态成像的质谱探针
  • 批准号:
    8322652
  • 财政年份:
    2011
  • 资助金额:
    $ 17.72万
  • 项目类别:
A Mass Spectrometry Probe for Transient Imaging of In-Solution Biochemistry
用于溶液内生物化学瞬态成像的质谱探针
  • 批准号:
    8541869
  • 财政年份:
    2011
  • 资助金额:
    $ 17.72万
  • 项目类别:
Array of Micromachined UltraSonic Electrosprays Bioanalytical Mass Spectrometry
微机械超声电喷雾生物分析质谱阵列
  • 批准号:
    7286862
  • 财政年份:
    2006
  • 资助金额:
    $ 17.72万
  • 项目类别:

相似国自然基金

YTHDF3调控CXCL13表达影响黑色素瘤免疫微环境及PD-1抗体疗效的机制
  • 批准号:
    82303866
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
AID介导抗体重链非编码区重组调控质膜BCR密度并影响记忆B细胞命运决定的研究
  • 批准号:
    32370948
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
P29单克隆抗体的3-羟基丁酰化修饰对其稳定性影响及提升抗泡型包虫病作用的研究
  • 批准号:
    82360402
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
  • 批准号:
    82304205
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
心衰患者中单克隆β1-肾上腺素受体自身抗体的筛选及其对受体构象影响的研究
  • 批准号:
    32271156
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
  • 批准号:
    10658665
  • 财政年份:
    2023
  • 资助金额:
    $ 17.72万
  • 项目类别:
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
  • 批准号:
    10593377
  • 财政年份:
    2023
  • 资助金额:
    $ 17.72万
  • 项目类别:
Engineered DNA-particles to model immune events in systemic lupus erythematosus
工程 DNA 颗粒模拟系统性红斑狼疮的免疫事件
  • 批准号:
    10644574
  • 财政年份:
    2023
  • 资助金额:
    $ 17.72万
  • 项目类别:
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
  • 批准号:
    10668497
  • 财政年份:
    2022
  • 资助金额:
    $ 17.72万
  • 项目类别:
Engineering Next-Generation Nanoparticles One Layer at a Time
一次一层地设计下一代纳米粒子
  • 批准号:
    10528938
  • 财政年份:
    2022
  • 资助金额:
    $ 17.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了