Protein Aggregation in Amorphous Solids
无定形固体中的蛋白质聚集
基本信息
- 批准号:8042629
- 负责人:
- 金额:$ 28.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAmino Acid SequenceAnionsAutoimmune DiseasesCardiovascular DiseasesChemicalsCommunicable DiseasesComputer SimulationComputing MethodologiesDataDeuteriumDiseaseDisulfidesDrug FormulationsDrug IndustryElectrospray IonizationEnsureEnvironmentExcipientsGlassGoalsHealthHot SpotHydrogenInvestmentsKnowledgeLifeMalignant NeoplasmsMarketingMeasuresMethodsMissionModelingPathway interactionsPatientsPeptide Sequence DeterminationPeptidesPharmaceutical PreparationsProcessPropertyProtein ConformationProteinsReactionResearchResolutionRoleRouteSafetySet proteinSiteSolidSolutionsSomatropinStructural ProteinStructureSulfhydryl CompoundsTestingTimeTransition ElementsTransition TemperatureUnited States National Institutes of HealthWorkamorphous solidbasecommercializationcomputerized toolscostdesigndrug developmentimmunogenicimprovedmolecular dynamicspreventprogramsprotein aggregationprotein structurereaction rateresearch studyresponsesolid statetool
项目摘要
DESCRIPTION (provided by applicant): Protein drugs are one of the fastest growing segments of the pharmaceutical industry. The strong demand for these drugs reflects their ability to treat previously intractable diseases, including cancers, infectious disease, autoimmune disorders and cardiovascular disease. More than 40% of currently marketed protein drug products are amorphous solids, a form often chosen to prolong shelf-life and preserve potency. Nevertheless, protein drugs undergo a variety of physical and chemical degradation processes in the solid state. Aggregation is one of the most common of these processes. Since the presence of aggregates is associated with decreased potency and with an increased potential for life-threatening immunogenic side effects, they must be detected and removed during manufacturing and storage. This adds to the cost of producing protein drugs, ultimately increasing the cost to the patient and precluding the commercialization of promising new protein drugs that cannot be stabilized effectively. The goal of this research program is to develop rational methods for preventing protein aggregation in the solid state based on a thorough understanding of the chemical (i.e., covalent) and physical (i.e., non- covalent) mechanisms involved. The central hypothesis is that protein aggregation in amorphous solids is the result of specific covalent reactions and/or the exposure of aggregation-prone "hot spots" in the protein sequence, both of which can be prevented by designing the solid environment. Studies proposed for Specific Aim 1 will elucidate the mechanisms of thiol-disulfide exchange and disulfide scrambling in amorphous solids and will identify solid properties that control these reactions. The studies test the hypothesis that these common routes of covalent aggregation favor different pathways in solution and in the solid state and are influenced by solid composition. Specific Aim 2 will identify "hot spots" for non-covalent protein aggregation in amorphous solids using hydrogen/deuterium (H/D) exchange and molecular dynamics simulation (MDS). The work tests the hypothesis that these quantitative, high resolution measures of protein structure in amorphous solids will correlate with non-covalent aggregation during long-term storage. Specific Aim 3 will develop a computational model that predicts protein aggregation in amorphous solids based on properties of the protein and solid, producing a tool for formulation design and identifying variables critical to preventing aggregation. The work is relevant to the NIH mission of advancing the Nation's capacity to protect and improve health in that it addresses methods to preserve the potency and safety of a rapidly growing class of drugs. The work is also consistent with the agency's goal of ensuring a continued high return on the public investment in research by providing tools and knowledge for developing active proteins into marketable drug products. The presence of aggregates in protein drug products increases the potential for life-threatening immunogenic responses when the drugs are administered to patients. Understanding aggregate formation in amorphous solids will help ensure the safety of this rapidly growing drug class. The work will also help to control drug development costs by providing a rational basis for protein drug formulation.
描述(由申请人提供):蛋白质药物是制药行业增长最快的细分市场之一。对这些药物的强烈需求反映了它们治疗以前棘手的疾病的能力,包括癌症,传染病,自身免疫性疾病和心血管疾病。超过40%的当前销售蛋白质药品是无定形固体,这种形式通常被选为延长保质期并保持效力。然而,蛋白质药物在固态下经历了各种物理和化学降解过程。聚集是这些过程中最常见的过程之一。由于聚集体的存在与效力降低有关,并且与威胁生命的免疫副作用的潜力增加有关,因此必须在制造和存储期间检测和去除它们。这增加了产生蛋白质药物的成本,最终增加了患者的成本,并排除了无法有效稳定的有希望的新蛋白质药物的商业化。该研究计划的目的是基于对涉及的化学物质(即共价)和物理(即非共价)机制的透彻理解,以开发用于预防固态蛋白质聚集的合理方法。中心假设是,无定形固体中的蛋白质聚集是特定的共价反应和/或在蛋白质序列中暴露于聚集的“热点”的结果,可以通过设计固体环境来预防蛋白质序列。提出的针对特定目标1的研究将阐明在无定形固体中二硫化物交换和二硫化物的机制,并将识别控制这些反应的固体特性。研究检验了以下假设:这些共价聚集的共同途径有利于溶液和固态中的不同途径,并且受固体组成的影响。特定的目标2将使用氢/氘(H/D)交换和分子动力学模拟(MDS)来鉴定无代固体中非共价蛋白聚集的“热点”。该工作检验了以下假设:这些定量的高分辨率测量无定形固体中的蛋白质结构将与长期存储期间的非共价聚集有关。特定目标3将开发一个计算模型,该模型基于蛋白质和固体的特性来预测无定形固体中的蛋白质聚集,从而产生一种用于制定设计的工具,并识别对防止聚集至关重要的变量。这项工作与NIH的使命是促进该国保护和改善健康能力的使命,因为它解决了维护快速增长类药物的效力和安全的方法。这项工作还与该机构的目标是一致的,即通过提供将活跃蛋白质开发到可销售的药品的工具和知识来确保公共研究的持续高回报。当药物对患者施用时,蛋白质药物中骨料的存在增加了威胁生命的免疫原性反应的潜力。了解无定形固体中的骨料形成将有助于确保这种快速增长的药物类别的安全。这项工作还将通过为蛋白质药物制剂提供合理的基础来帮助控制药物开发成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(4)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth M. Topp其他文献
Cocrystalline Solids of Telaprevir with Enhanced Oral Absorption
- DOI:
10.1002/jps.24534 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Kathy Stavropoulos;Steven C. Johnston;Yuegang Zhang;Bhisetti Govinda Rao;Michael Hurrey;Patricia Hurter;Elizabeth M. Topp;Irina Kadiyala - 通讯作者:
Irina Kadiyala
Effect of ‘pH’ on the rate of asparagine deamidation in polymeric formulations: ‘pH’–rate profile
- DOI:
10.1002/1520-6017(200102)90:2<141::aid-jps5>3.0.co;2-y - 发表时间:
2001-02-01 - 期刊:
- 影响因子:
- 作者:
Yuan Song;Richard L. Schowen;Ronald T. Borchardt;Elizabeth M. Topp - 通讯作者:
Elizabeth M. Topp
Elizabeth M. Topp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth M. Topp', 18)}}的其他基金
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Program the Immune System against RAS-driven Cancer
对免疫系统进行编程以对抗 RAS 驱动的癌症
- 批准号:
10612257 - 财政年份:2023
- 资助金额:
$ 28.21万 - 项目类别:
Nanotherapeutic Delivery of Resveratrol Analogs as a Pre-Treatment of Allografts in Solid Organ Transplantation
白藜芦醇类似物的纳米治疗递送作为实体器官移植中同种异体移植物的预处理
- 批准号:
9034163 - 财政年份:2016
- 资助金额:
$ 28.21万 - 项目类别:
Prevention of Candida biofilms by localized delivery of aurein analogues
通过局部递送金黄色素类似物预防念珠菌生物膜
- 批准号:
9221080 - 财政年份:2016
- 资助金额:
$ 28.21万 - 项目类别:
Nanotherapeutic Delivery of Resveratrol Analogs as a Pre-Treatment of Allografts in Solid Organ Transplantation
白藜芦醇类似物的纳米治疗递送作为实体器官移植中同种异体移植物的预处理
- 批准号:
9306943 - 财政年份:2016
- 资助金额:
$ 28.21万 - 项目类别: