Search for the Higgs Boson at the ATLAS Experiment
在 ATLAS 实验中寻找希格斯玻色子
基本信息
- 批准号:PP/E003699/1
- 负责人:
- 金额:$ 54.96万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over a century of study has led physicists to develop the Standard Model theory (SM) of the building blocks of matter and the forces among them. This combines the strong force which binds quarks into nuclei, the weak force which explains radioactivity and the electromagnetic force which holds electrons in atoms. To date, it is the most accurately tested scientific theory, verified to a few parts per billion! Given this amazing success you may wonder why scientists have any doubts about the theory. However, one piece is missing: understanding the generation of mass. Despite all of the SM's testable predictions, it cannot predict any particle's mass (and by extension cannot explain your or my weight). This challenge inspires theories ranging from tweaks of the SM, to more outlandish, but possibly true, theories which require a plethora of new particles, possibly accounting for dark matter. In 1964 Peter Higgs, now Edinburgh professor emeritus, proposed an elegant solution to the mass generation problem requiring only one new particle. This 'boson' grabs hold of other particles and the stronger it holds on, the heavier they become. The eponymous Higgs boson has been a holy grail of fundamental science ever since. Although the Higgs boson was devised to generate mass, its own mass is unspecified. Scientists worldwide have searched for it unsuccessfully, ruling out large mass ranges and driving the search to increasingly high energies. Evidence from other precision data now predicts that if the SM Higgs boson exists, it can be found at the Large Hadron Collider (LHC) at the European Centre for Particle Physics (CERN) which will collide protons in a 27km underground ring at unprecedented energies in 2008. There, we should find the long-awaited SM Higgs boson or, possibly, a boson with unexpected properties revealing that more complex dynamics occur in nature, prompting an entire re-think or extension of the SM. If it exists, my proposed programme will discover the SM Higgs boson in the experimentally favoured low mass range. If not, I may find nature's Higgs surrogate. My careful study will identify which of these scenarios is realised. I will search data from the ATLAS experiment at LHC, analysing 10 billion catalogued collisions, a task likened to finding one phone number in a 1000 directories. However, this is no random search since we know how to look for this 'number': we can do the equivalent of finding out the person's surname by looking for known characteristics of the Higgs boson in data! Theoretical understanding of the boson and experimental skill will pinpoint it in the midst of the maelstrom of activity in energetic proton collisions. I will build and lead a team in the Oxford ATLAS group to find the Higgs boson in its decay to two tau leptons or bottom quarks. With careful analysis of the data, these will provide distinctive experimental fingerprints. Simulations show that these decays will yield the five statistical standard deviations 'gold standard' of convincing discovery. The combination of the group's expertise and my in-depth experience from the USA's Tevatron collider will provide a firm foundation for each member of the team to study one element of the signature. For example by homing in on datasets which contain signatures of known particles which decay like the Higgs boson, the identification algorithms can be honed. Finding the tau lepton or bottom quark requires algorithms which I will base on my experience of precision measurements in the bottom quark sector. These studies will characterise the ATLAS hardware enabling us to search the phonebooks of nature which the experiment provides. We cannot be sure that the Standard Model Higgs boson exists, but we can be certain that the hunt for the Higgs will be a fascinating journey whose destination may prove Peter Higgs right, or even more excitingly, that nature is richer and more complex than he imagined.
经过一个多世纪的研究,物理学家发展出了关于物质组成部分及其相互作用力的标准模型理论(SM)。这结合了将夸克结合成原子核的强力、解释放射性的弱力以及将电子固定在原子中的电磁力。迄今为止,它是经过最准确测试的科学理论,验证精度达到十亿分之几!鉴于这一惊人的成功,您可能想知道为什么科学家对这个理论有任何疑问。然而,有一点缺失:理解质量的产生。尽管 SM 有所有可测试的预测,但它无法预测任何粒子的质量(并且无法解释你或我的重量)。这一挑战激发了各种理论,从 SM 的调整,到更古怪但可能是正确的理论,这些理论需要大量新粒子,可能解释暗物质。 1964 年,现为爱丁堡名誉教授的彼得·希格斯 (Peter Higgs) 提出了一种巧妙的解决方案,只需一个新粒子即可解决大规模生成问题。这种“玻色子”会抓住其他粒子,它的抓住力越强,它们就会变得越重。从那时起,同名的希格斯玻色子就一直是基础科学的圣杯。尽管希格斯玻色子被设计用来产生质量,但其自身的质量尚未确定。全世界的科学家都没有成功地寻找它,排除了大质量范围的可能性,并将搜索推向了越来越高的能量。来自其他精确数据的证据现在预测,如果 SM 希格斯玻色子存在,那么可以在欧洲粒子物理中心 (CERN) 的大型强子对撞机 (LHC) 中找到它,该对撞机将以前所未有的能量在 27 公里的地下环中对质子进行碰撞2008 年。在那里,我们应该会发现期待已久的 SM 希格斯玻色子,或者可能是一种具有意想不到特性的玻色子,它揭示了自然界中存在更复杂的动力学,从而促使整个重新思考或延伸SM。如果它存在,我提出的计划将在实验上有利的低质量范围内发现 SM 希格斯玻色子。如果没有,我可能会找到自然界的希格斯粒子替代品。我的仔细研究将确定哪些场景会实现。我将搜索大型强子对撞机 ATLAS 实验的数据,分析 100 亿个编目碰撞,这项任务相当于在 1000 个目录中查找一个电话号码。然而,这不是随机搜索,因为我们知道如何寻找这个“数字”:我们可以通过在数据中寻找希格斯玻色子的已知特征来完成相当于找出人姓氏的工作!对玻色子的理论理解和实验技巧将在高能质子碰撞活动的漩涡中精确定位它。我将在牛津 ATLAS 小组中建立并领导一个团队,寻找衰变为两个 tau 轻子或底夸克的希格斯玻色子。通过仔细分析数据,这些将提供独特的实验指纹。模拟表明,这些衰变将产生令人信服的发现的五个统计标准差“黄金标准”。该团队的专业知识和我在美国 Tevatron 对撞机的深入经验相结合,将为团队的每个成员研究签名的一个元素提供坚实的基础。例如,通过追踪包含像希格斯玻色子一样衰变的已知粒子特征的数据集,可以磨练识别算法。寻找 tau 轻子或底夸克需要算法,我将根据我在底夸克领域精确测量的经验来计算这些算法。这些研究将描述 ATLAS 硬件的特征,使我们能够搜索实验提供的自然电话簿。我们不能确定标准模型希格斯玻色子是否存在,但我们可以肯定,寻找希格斯玻色子将是一次令人着迷的旅程,其目的地可能会证明彼得·希格斯是正确的,或者更令人兴奋的是,大自然比他更丰富、更复杂。想象的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Search for resonant WZ production in the WZ -> lvl ' l ' channel in root(s)=7 TeV pp collisions with the ATLAS detector
在与 ATLAS 探测器的 root(s)=7 TeV pp 碰撞中搜索 WZ -> lvl l 通道中的共振 WZ 产生
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:A A10 - Abdinov A11 - O A12 - Abi A13 - B A14 - Abolins A15 - M A16 - AbouZeid A17 - OS A18 - Abramowicz A19 - H A20 - Abreu A21 - H A22 - Acerbi A23 - E A24 - Acharya A25 - BS A26 - Adam A27 - E A28 - Adamc
- 通讯作者:A A10 - Abdinov A11 - O A12 - Abi A13 - B A14 - Abolins A15 - M A16 - AbouZeid A17 - OS A18 - Abramowicz A19 - H A20 - Abreu A21 - H A22 - Acerbi A23 - E A24 - Acharya A25 - BS A26 - Adam A27 - E A28 - Adamc
Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC
在大型强子对撞机上使用 ATLAS 探测器寻找标准模型希格斯玻色子时观察到的新粒子
- DOI:10.1016/j.physletb.2012.08.020
- 发表时间:2012-09-17
- 期刊:
- 影响因子:4.4
- 作者:Aad, G.;Abajyan, T.;Zwalinski, L.
- 通讯作者:Zwalinski, L.
Search for Quantum Black Hole Production in High-Invariant-Mass Lepton + Jet Final States Using p p Collisions at s = 8 TeV and the ATLAS Detector
使用 s = 8 TeV 处的 p p 碰撞和 ATLAS 探测器搜索高不变质量轻子射流最终状态中的量子黑洞产生
- DOI:10.1103/physrevlett.112.091804
- 发表时间:2014
- 期刊:
- 影响因子:8.6
- 作者:Aad G
- 通讯作者:Aad G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sinead Farrington其他文献
Sinead Farrington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sinead Farrington', 18)}}的其他基金
Efficient Computing for Particle Physics (Lead Proposal)
粒子物理的高效计算(主要提案)
- 批准号:
ST/T002816/1 - 财政年份:2020
- 资助金额:
$ 54.96万 - 项目类别:
Research Grant
Refer to ATLAS-UK upgrade proposal to PPRP: "UPGRADING THE ATLAS EXPERIMENT FOR THE LUMINOSITY FRONTIER AT THE LARGE HADRON COLLIDER"
请参阅 ATLAS-UK 对 PPRP 的升级提案:“升级大型强子对撞机光度前沿的 ATLAS 实验”
- 批准号:
ST/P002455/1 - 财政年份:2016
- 资助金额:
$ 54.96万 - 项目类别:
Research Grant
Search for the Higgs Boson at the ATLAS Experiment
在 ATLAS 实验中寻找希格斯玻色子
- 批准号:
PP/E003699/2 - 财政年份:2011
- 资助金额:
$ 54.96万 - 项目类别:
Fellowship
相似国自然基金
Higgs玻色子产生过程及其相关物理问题的研究
- 批准号:12265011
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
使用大型强子对撞机CMS实验研究希格斯玻色子与第二代费米子之间的相互作用
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
ATLAS实验上希格斯玻色子不可见衰变的寻找
- 批准号:12205313
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用具有高能量的希格斯玻色子寻找超出标准模型的新物理
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Belle实验上在Upsilon(1S)和Upsilon(2S)辐射衰变过程中对CP-odd希格斯玻色子的寻找
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Search for the Dimuon decay of the Standard Model Higgs Boson using ATLAS
使用 ATLAS 搜索标准模型希格斯玻色子的 Dimuon 衰变
- 批准号:
2907975 - 财政年份:2024
- 资助金额:
$ 54.96万 - 项目类别:
Studentship
Search for TeV-scale dark matter particles using the Higgs boson as a probe
使用希格斯玻色子作为探针搜索 TeV 尺度的暗物质粒子
- 批准号:
23K13114 - 财政年份:2023
- 资助金额:
$ 54.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Search for Standard Model of Higgs boson production in association with a single top-quark
搜索与单个顶夸克相关的希格斯玻色子产生的标准模型
- 批准号:
572615-2022 - 财政年份:2022
- 资助金额:
$ 54.96万 - 项目类别:
University Undergraduate Student Research Awards
Search for the decay o the Higgs boson to two muons
寻找希格斯玻色子衰变为两个μ子
- 批准号:
562519-2021 - 财政年份:2021
- 资助金额:
$ 54.96万 - 项目类别:
University Undergraduate Student Research Awards
Search for the associated production of a Higgs boson and a top quark pair decaying to leptons with the ATLAS detector
使用 ATLAS 探测器寻找希格斯玻色子和顶夸克对衰变成轻子的相关产物
- 批准号:
518617-2018 - 财政年份:2020
- 资助金额:
$ 54.96万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral