Search for the Higgs Boson at the ATLAS Experiment
在 ATLAS 实验中寻找希格斯玻色子
基本信息
- 批准号:PP/E003699/2
- 负责人:
- 金额:$ 15.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over a century of study has led physicists to develop the Standard Model theory (SM) of the building blocks of matter and the forces among them. This combines the strong force which binds quarks into nuclei, the weak force which explains radioactivity and the electromagnetic force which holds electrons in atoms. To date, it is the most accurately tested scientific theory, verified to a few parts per billion! Given this amazing success you may wonder why scientists have any doubts about the theory. However, one piece is missing: understanding the generation of mass. Despite all of the SM's testable predictions, it cannot predict any particle's mass (and by extension cannot explain your or my weight). This challenge inspires theories ranging from tweaks of the SM, to more outlandish, but possibly true, theories which require a plethora of new particles, possibly accounting for dark matter. In 1964 Peter Higgs, now Edinburgh professor emeritus, proposed an elegant solution to the mass generation problem requiring only one new particle. This 'boson' grabs hold of other particles and the stronger it holds on, the heavier they become. The eponymous Higgs boson has been a holy grail of fundamental science ever since. Although the Higgs boson was devised to generate mass, its own mass is unspecified. Scientists worldwide have searched for it unsuccessfully, ruling out large mass ranges and driving the search to increasingly high energies. Evidence from other precision data now predicts that if the SM Higgs boson exists, it can be found at the Large Hadron Collider (LHC) at the European Centre for Particle Physics (CERN) which will collide protons in a 27km underground ring at unprecedented energies in 2008. There, we should find the long-awaited SM Higgs boson or, possibly, a boson with unexpected properties revealing that more complex dynamics occur in nature, prompting an entire re-think or extension of the SM. If it exists, my proposed programme will discover the SM Higgs boson in the experimentally favoured low mass range. If not, I may find nature's Higgs surrogate. My careful study will identify which of these scenarios is realised. I will search data from the ATLAS experiment at LHC, analysing 10 billion catalogued collisions, a task likened to finding one phone number in a 1000 directories. However, this is no random search since we know how to look for this 'number': we can do the equivalent of finding out the person's surname by looking for known characteristics of the Higgs boson in data! Theoretical understanding of the boson and experimental skill will pinpoint it in the midst of the maelstrom of activity in energetic proton collisions. I will build and lead a team in the Oxford ATLAS group to find the Higgs boson in its decay to two tau leptons or bottom quarks. With careful analysis of the data, these will provide distinctive experimental fingerprints. Simulations show that these decays will yield the five statistical standard deviations 'gold standard' of convincing discovery. The combination of the group's expertise and my in-depth experience from the USA's Tevatron collider will provide a firm foundation for each member of the team to study one element of the signature. For example by homing in on datasets which contain signatures of known particles which decay like the Higgs boson, the identification algorithms can be honed. Finding the tau lepton or bottom quark requires algorithms which I will base on my experience of precision measurements in the bottom quark sector. These studies will characterise the ATLAS hardware enabling us to search the phonebooks of nature which the experiment provides. We cannot be sure that the Standard Model Higgs boson exists, but we can be certain that the hunt for the Higgs will be a fascinating journey whose destination may prove Peter Higgs right, or even more excitingly, that nature is richer and more complex than he imagined.
一个多世纪的研究导致物理学家开发了物质基础及其力量的标准模型理论(SM)。这结合了将夸克结合到核的强力,这是解释放射性和电磁力的弱力,将电子固定在原子中。迄今为止,它是最精确测试的科学理论,验证为十亿分之几!鉴于这一惊人的成功,您可能会想知道为什么科学家对该理论有任何疑问。但是,缺少一块:了解质量的产生。尽管SM的所有可测试预测都无法预测任何粒子的质量(并且通过扩展无法解释您或我的体重)。这项挑战激发了从SM的调整到更古怪但可能是正确的理论的理论,这些理论需要大量的新粒子,可能会考虑到暗物质。 1964年,现为爱丁堡教授的彼得·希格斯(Peter Higgs)提出了一个优雅的解决方案,以解决仅需要一个新粒子的大众产生问题。这种“玻色子”抓住了其他颗粒,它越强,它们变得越重。从那以后,同名的希格斯玻色子一直是基本科学的圣杯。尽管Higgs玻色子是设计用于产生质量的,但其自身的质量未指定。全世界的科学家都没有成功地搜索它,排除了大型范围,并将搜索推向了越来越高的精力。现在,来自其他准确数据的证据现在可以预测,如果存在SM Higgs玻色子,则可以在欧洲粒子物理中心(CERN)的大型强子对撞机(LHC)中找到,该中心将在2008年未经前所未有的能量的地下环中的27公里地下环中碰撞质子。本质上,促使SM的整个重新考虑或扩展。如果存在,我提出的程序将发现SM Higgs玻色子在实验中有利的低质量范围内。如果没有,我可能会发现大自然的希格斯代理。我的仔细研究将确定这些情况中的哪些已实现。我将从LHC的Atlas实验中搜索数据,分析100亿个碰撞的碰撞,这项任务比喻为在1000个目录中找到一个电话号码。但是,这不是随机的搜索,因为我们知道如何寻找此“数字”:我们可以通过在数据中寻找Higgs Boson的已知特征来做到相当于找出该人的姓氏!对玻色子和实验技能的理论理解将在能量质子碰撞中的活性漩涡中将其定位为中。我将在牛津图特拉斯集团(Oxford Atlas Group)中建立并带领一支球队,以发现希格斯(Higgs)玻色子(Higgs Boson)的腐烂,向两个tau leptons或底部的夸克。通过仔细分析数据,这些将提供独特的实验指纹。模拟表明,这些衰减将产生令人信服的发现的五个统计标准偏差“黄金标准”。该小组的专业知识和我在美国Tevatron Collider的深入经验的结合将为团队的每个成员提供一个坚定的基础,以研究签名的一个要素。例如,通过在包含已知颗粒的签名的数据集中归巢,这些粒子像希格斯玻色子一样腐烂,可以磨削识别算法。找到tau Lepton或底部夸克需要算法,我将基于我在底部夸克部门的精确测量经验。这些研究将表征Atlas硬件,使我们能够搜索实验提供的自然电话簿。我们不能确定存在标准模型Higgs Boson,但是我们可以肯定的是,对希格斯的追捕将是一个令人着迷的旅程,其目的地可能证明彼得·希格斯(Peter Higgs)是正确的,甚至更令人兴奋的是,这种大自然比他想象的要更加丰富,更复杂。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Search for resonant WZ production in the WZ -> lvl ' l ' channel in root(s)=7 TeV pp collisions with the ATLAS detector
在与 ATLAS 探测器的 root(s)=7 TeV pp 碰撞中搜索 WZ -> lvl l 通道中的共振 WZ 产生
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:A A10 - Abdinov A11 - O A12 - Abi A13 - B A14 - Abolins A15 - M A16 - AbouZeid A17 - OS A18 - Abramowicz A19 - H A20 - Abreu A21 - H A22 - Acerbi A23 - E A24 - Acharya A25 - BS A26 - Adam A27 - E A28 - Adamc
- 通讯作者:A A10 - Abdinov A11 - O A12 - Abi A13 - B A14 - Abolins A15 - M A16 - AbouZeid A17 - OS A18 - Abramowicz A19 - H A20 - Abreu A21 - H A22 - Acerbi A23 - E A24 - Acharya A25 - BS A26 - Adam A27 - E A28 - Adamc
Search for new phenomena in photon + jet events collected in proton-proton collisions at s = 8 TeV with the ATLAS detector
使用 ATLAS 探测器寻找 s = 8 TeV 质子-质子碰撞中收集的光子喷流事件中的新现象
- DOI:10.1016/j.physletb.2013.12.029
- 发表时间:2014
- 期刊:
- 影响因子:4.4
- 作者:Aad G
- 通讯作者:Aad G
Performance of the ATLAS detector using first collision data
- DOI:10.1007/jhep09(2010)056
- 发表时间:2010-09-01
- 期刊:
- 影响因子:5.4
- 作者:Aad, G.;Abat, E.;Zutshi, V.
- 通讯作者:Zutshi, V.
Search for contact interactions in dimuon events from p p collisions at s = 7 TeV with the ATLAS detector
使用 ATLAS 探测器在 s = 7 TeV 处的 p p 碰撞中搜索 dimuon 事件中的接触相互作用
- DOI:10.1103/physrevd.84.011101
- 发表时间:2011
- 期刊:
- 影响因子:5
- 作者:Aad G
- 通讯作者:Aad G
Search for a standard model Higgs boson in the H ? ZZ ? l + l - ? ? ¯ decay channel using 4.7 fb - 1 of s = 7 TeV data with the ATLAS detector
寻找 H 中的标准模型希格斯玻色子?
- DOI:10.1016/j.physletb.2012.09.016
- 发表时间:2012
- 期刊:
- 影响因子:4.4
- 作者:Aad G
- 通讯作者:Aad G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sinead Farrington其他文献
Sinead Farrington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sinead Farrington', 18)}}的其他基金
Efficient Computing for Particle Physics (Lead Proposal)
粒子物理的高效计算(主要提案)
- 批准号:
ST/T002816/1 - 财政年份:2020
- 资助金额:
$ 15.06万 - 项目类别:
Research Grant
Refer to ATLAS-UK upgrade proposal to PPRP: "UPGRADING THE ATLAS EXPERIMENT FOR THE LUMINOSITY FRONTIER AT THE LARGE HADRON COLLIDER"
请参阅 ATLAS-UK 对 PPRP 的升级提案:“升级大型强子对撞机光度前沿的 ATLAS 实验”
- 批准号:
ST/P002455/1 - 财政年份:2016
- 资助金额:
$ 15.06万 - 项目类别:
Research Grant
Search for the Higgs Boson at the ATLAS Experiment
在 ATLAS 实验中寻找希格斯玻色子
- 批准号:
PP/E003699/1 - 财政年份:2007
- 资助金额:
$ 15.06万 - 项目类别:
Fellowship
相似国自然基金
使用大型强子对撞机CMS实验研究希格斯玻色子与第二代费米子之间的相互作用
- 批准号:12275005
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
使用大型强子对撞机CMS实验研究希格斯玻色子与第二代费米子之间的相互作用
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
ATLAS实验上希格斯玻色子不可见衰变的寻找
- 批准号:12205313
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Higgs玻色子产生过程及其相关物理问题的研究
- 批准号:12265011
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
利用具有高能量的希格斯玻色子寻找超出标准模型的新物理
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Search for the Dimuon decay of the Standard Model Higgs Boson using ATLAS
使用 ATLAS 搜索标准模型希格斯玻色子的 Dimuon 衰变
- 批准号:
2907975 - 财政年份:2024
- 资助金额:
$ 15.06万 - 项目类别:
Studentship
Search for TeV-scale dark matter particles using the Higgs boson as a probe
使用希格斯玻色子作为探针搜索 TeV 尺度的暗物质粒子
- 批准号:
23K13114 - 财政年份:2023
- 资助金额:
$ 15.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Search for Standard Model of Higgs boson production in association with a single top-quark
搜索与单个顶夸克相关的希格斯玻色子产生的标准模型
- 批准号:
572615-2022 - 财政年份:2022
- 资助金额:
$ 15.06万 - 项目类别:
University Undergraduate Student Research Awards
Search for the decay o the Higgs boson to two muons
寻找希格斯玻色子衰变为两个μ子
- 批准号:
562519-2021 - 财政年份:2021
- 资助金额:
$ 15.06万 - 项目类别:
University Undergraduate Student Research Awards
Search for the associated production of a Higgs boson and a top quark pair decaying to leptons with the ATLAS detector
使用 ATLAS 探测器寻找希格斯玻色子和顶夸克对衰变成轻子的相关产物
- 批准号:
518617-2018 - 财政年份:2020
- 资助金额:
$ 15.06万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral