AMP-activated kinase in diabetic complications
糖尿病并发症中的 AMP 激活激酶
基本信息
- 批准号:7585276
- 负责人:
- 金额:$ 35.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:1-Phosphatidylinositol 3-Kinase3-nitrotyrosine5&apos-AMP-activated protein kinaseAbbreviationsAcetyl-CoA CarboxylaseAdenosine MonophosphateAdenosine TriphosphateAdenovirusesAdverse effectsAgeApolipoprotein EArterial Fatty StreakBiologicalBiological AssayBlood VesselsCardiovascular DiseasesCellsCellular StressComplementComplications of Diabetes MellitusCultured CellsCyclic GMPDataDefense MechanismsDevelopmentDiabetes MellitusDisease susceptibilityDominant-Negative MutationEndothelial CellsEndotheliumEnzymesEpoprostenolEventFatty AcidsFunctional disorderGLUT4 geneGeneral PopulationGlucoseGlucose TransporterGlycerolGlycerol-3-phosphate acyltransferaseGoalsHealthHeat-Shock Proteins 90HumanHyperglycemiaHypoxiaIn VitroIncubatedInjection of therapeutic agentInsulinInsulin ResistanceIschemic PreconditioningKnock-outKnockout MiceLeadLesionLipid PeroxidationLipidsMAPK8 geneMeasurementMetabolic stressMitochondriaMolecularMonitorMusNG-Nitroarginine Methyl EsterNational Research Service AwardsNitric OxideNonesterified Fatty AcidsPalmitatesPathway interactionsPeroxonitritePhosphatidylinositolsProstacyclin synthaseProstaglandinsProstaglandins IProtein Kinase CProteinsProto-Oncogene Proteins c-aktReactive Nitrogen SpeciesReactive Oxygen SpeciesRelaxationReperfusion TherapySignal TransductionStreptozocinStressSuperoxide DismutaseSuperoxidesTechniquesTestingThoracic aortaTimeTissuesTyrosineUCP2 proteinWorkarginine methyl esterbiological adaptation to stressdiabetes mellitus therapydiabetichuman NOS3 proteinimidazole-4-carboxamideimprovedin vivoindexinginsightinsulin signalinglipid metabolismnitrationnoveloverexpressionoxidant stressperoxisomepreventreceptorribosidestress-activated protein kinase 1type I and type II diabetes
项目摘要
Diabetes mellitus and its associated complications are a major health problem in the developed world.
Diabetics are 2- to 4-times more likely to have cardiovascular diseases (CVD) than general population. One
feature of diabetes that has become apparent in recent years is excess oxidant stress. In preliminary data
presented here, we have found that hyperglycemia and free fatty acids (FFA), two hallmarks of type I and
type II diabetes, impart an oxidant stress in endothelial cells. These results in lipid peroxiiation, tyrosine
nitration of prostacyclin synthase (PGIS), reduced NO bioactivity, endothelial nitric oxide synthase (eNOS)
uncoupling, and insulin resistance. We have also found that treatment with the AMP-activated kinase
(AMPK) activator, 5-amino-4-imidazole carboxamide riboside (AICAR), prevents all of these events
including the increase in oxidant stress and insulin resistance from occurring. A basic premise of this
proposal is that AMPK activation could protect the endothelial cell against the adverse effects of
hyperglycemia and FFA by increasing mitochondrial uncoupling protein (UCP)-2 that lead to a decrease in
oxidant stress in parallel with an increase in NO bioactivity. Therefore, as a central hypothesis of this
application, we propose that vascular diathesis of insulin resistance and diabetes is due, in part, from a
hyperglycemia/FFA-induced oxidant stress and a compensatory activation of AMPK. The next part of our
proposal will determine the consequences of AMPK activation on oxidant stress, endothelial function, and
insulin signaling, capitalizing on preliminary data that AICAR reduces both cellular oxidant stress and insulin
resistance from glucose and fatty acids in vitro and aortic lesions in Apo-E knockout (KO) enhanced by
diabetes in vivo. In order to accomplish this goal, we propose to study 1). To determine if activation of
AMPK by a number of means (pharmacological and molecular biological means) reduces oxidant stress and
insulin resistance and to evaluate how it works, and 2). To determine if AMPK-dependent reduction in.
oxidant stress and endothelial dysfunction is operating in diabetes in vivo. This powerful combination of in
vitro and in vivo techniques will provide novel information as to how the metabolic stresses associated with
diabetes cause damage to the endothelium. They should also yield insights into how endothelium attempts
to protect itself against these stresses and whether AMPK is a potential target for therapy for diabetes.
糖尿病及其相关并发症是发达国家的主要健康问题。
糖尿病患者患心血管疾病(CVD)的可能性高2到4倍。一
近年来糖尿病的特征是过量的氧化应激。在初步数据中
在这里提出的是,我们发现高血糖和游离脂肪酸(FFA),I型的两个标志和
II型糖尿病,在内皮细胞中赋予氧化应激。这些结果导致脂质过氧,酪氨酸
前列环蛋白合酶(PGI)的硝化,无生物活性,内皮一氧化氮合酶(ENOS)
解偶联和胰岛素抵抗。我们还发现用AMP激活激酶治疗
(AMPK)激活剂,5-氨基-4-咪唑羧酰胺核苷(AICAR),可防止所有这些事件
包括氧化应激的增加和发生的胰岛素抵抗。一个基本前提
建议是AMPK激活可以保护内皮细胞免受不利影响
通过增加线粒体解偶联蛋白(UCP)-2的高血糖和FFA,导致减少
氧化应激并联,无生物活性。因此,作为对此的核心假设
应用,我们建议胰岛素抵抗和糖尿病的血管核心部分是由于
高血糖/FFA诱导的氧化应激和AMPK的补偿性激活。我们的下一部分
建议将确定AMPK激活对氧化应激,内皮功能和
胰岛素信号传导,利用AICAR降低细胞氧化剂和胰岛素的初步数据
体外葡萄糖和脂肪酸的耐药性在Apo-E敲除(KO)中的主动脉损伤(KO)的抗性。
体内糖尿病。为了实现这一目标,我们建议研究1)。确定激活是否激活
通过多种均值(药理和分子生物学手段)的AMPK减少了氧化应激和
胰岛素抵抗并评估其工作原理,2)。确定AMPK依赖性降低。
氧化应激和内皮功能障碍在体内糖尿病中工作。这种强大的组合
体外和体内技术将提供有关与代谢应力如何相关的新信息
糖尿病会损害内皮。他们还应该对内皮如何尝试产生见解
保护自己免受这些压力以及AMPK是否是治疗糖尿病的潜在靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MING-HUI ZOU其他文献
MING-HUI ZOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MING-HUI ZOU', 18)}}的其他基金
Prevention of high fat diet-induced vascular injury
预防高脂饮食引起的血管损伤
- 批准号:
8610941 - 财政年份:2010
- 资助金额:
$ 35.56万 - 项目类别:
相似国自然基金
构建细菌内源性3-硝基-L-酪氨酸分析新方法用于抗生素作用下活性氮的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属硫蛋白对糖尿病心肌中ATP合成酶硝化应激的调控作用
- 批准号:81300171
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
bFGF对糖尿病溃疡组织中血管内皮细胞能量代谢关键酶硝化应激的调控作用
- 批准号:81371753
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
小鼠糖尿病db/db模型中3-氧酸辅酶A 转移酶的酪氨酸硝基化修饰
- 批准号:30700378
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the mechanism of erythropoietin (EPO) in mitigating Dry-AMD pathophysiology
阐明促红细胞生成素 (EPO) 缓解干性 AMD 病理生理学的机制
- 批准号:
10521937 - 财政年份:2022
- 资助金额:
$ 35.56万 - 项目类别:
Dose Ranging study of the Effects of Alpha Acid on Oxidative Stress
α酸对氧化应激影响的剂量范围研究
- 批准号:
7896471 - 财政年份:2008
- 资助金额:
$ 35.56万 - 项目类别: