Functionalizing Hydroxyapatite With Proadhesive Peptides
用促粘附肽功能化羟基磷灰石
基本信息
- 批准号:7280963
- 负责人:
- 金额:$ 24.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-22 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAddressAdhesionsAmericanAmino AcidsAttentionAutologousBindingBiocompatible MaterialsBiological AssayBiological ModelsBiomaterials ResearchBiomimeticsBone MarrowBone RegenerationBone SubstitutesBone TransplantationCell AdhesionCell surfaceCell-Matrix JunctionCellsClassCollagenConditionCouplingDataDefectDental ImplantsDepositionDevicesEngineeringEnvironmentExtracellular MatrixFibronectinsFutureGene ExpressionGoalsGoldGrantGreen Fluorescent ProteinsHA coatingHip region structureHumanHydroxyapatitesImplantIn SituIn VitroIntegrinsJoint ProsthesisJointsKneeLabelLaboratoriesLentivirus VectorLesionMesenchymal Stem CellsMetalsMethodsModelingMorphologyObject AttachmentOrthopedicsOsseointegrationOsteoblastsOsteogenesisPatientsPeptidesPerformanceProceduresProsthesisProteinsPublic HealthRGD (sequence)RattusResearch PersonnelRiskSerumSignal TransductionStandards of Weights and MeasuresSumSurfaceTestingThinkingTimeVitronectinbasebonebone morphogenic proteincalcium phosphateconceptdesignfunctional restorationimplant coatingimplant materialimplantationimprovedin vivoknee replacement arthroplastymimeticsmineralizationnovel strategiesprogramsreceptorrepairedretinal rodsscaffoldsurface coatingtibia
项目摘要
DESCRIPTION (provided by applicant): Every year, millions of Americans receive some type of orthopaedic or dental implant. Joint prostheses (e.g. hip and knee) have been very successful in restoring function to patients, however these devices generally last only 10-15 years. Implants used for filling bone defects or lesions are even less well-developed; the current "gold standard" for treatment is autologous bone graft, which carries many associated risks and limitations. Recently, many investigators have sought to improve implant performance by modifying biomaterials with molecules that mimic the endogenous bone environment, for example, peptides derived from components of the extracellular matrix. This "biomimetics approach" has shown much promise for enhancing the bioactivity of certain types of materials, however, surprisingly, the class of materials that is among the most osseoconductive, the calcium phosphates, has received the least amount of attention in this regard. To address this deficit in biomaterials research, the broad, long-term goal of this project is to determine whether mimetic proteins/peptides, such as collagen l-derived peptides and Bone Morphogenic Protein-2 (BMP-2), can enhance the osseointegration of calcium phosphate biomaterials, particularly hydroxyapatite (HA). To accomplish this goal, we have designed 4 specific aims:
Specific Aim 1: To identify biomimetic peptides that stimulate optimal in vitro human mesenchymal stem cell (MSC) attachment and differentiation.
Specific Aim 2: To determine whether engineering peptides with additional domains enhances peptide tethering and/or bioactivity. More specifically, peptides will be modified by adding an HA-binding sequence, or by inserting a polylinker domain between the HA- and cell-binding motifs.
Specific Aim 3: To test the efficacy of peptide coatings in promoting adhesion and differentiation of endogenous MSCs, leading to enhanced bone formation. A rat tibial implantation model will be used to test peptide efficacy in vivo.
Specific Aim 4: To determine whether osseointegration can be improved by pre-loading scaffolds with MSCs. Public-health relatedness: The major goal of this study is to optimize the performance of calcium phosphate biomaterials that are commonly used for joint prosthetic and bone replacement applications.
描述(由申请人提供):每年,数百万美国人接受某种类型的骨科或牙科植入物。关节假体(例如髋关节和膝关节)在恢复患者功能方面非常成功,但这些装置通常只能持续 10-15 年。用于填充骨缺损或病变的植入物更不发达;目前的治疗“黄金标准”是自体骨移植,但它具有许多相关的风险和局限性。最近,许多研究人员试图通过用模拟内源骨环境的分子(例如源自细胞外基质成分的肽)修饰生物材料来提高植入物性能。这种“仿生学方法”在增强某些类型材料的生物活性方面显示出很大的希望,然而,令人惊讶的是,骨传导性最强的一类材料——磷酸钙——在这方面受到的关注最少。为了解决生物材料研究中的这一缺陷,该项目的广泛、长期目标是确定模拟蛋白/肽,例如胶原蛋白衍生肽和骨形态发生蛋白-2 (BMP-2),是否可以增强骨整合磷酸钙生物材料,特别是羟基磷灰石(HA)。为了实现这一目标,我们设计了4个具体目标:
具体目标 1:鉴定可刺激最佳体外人间充质干细胞 (MSC) 附着和分化的仿生肽。
具体目标 2:确定具有额外结构域的工程肽是否增强肽束缚和/或生物活性。更具体地说,将通过添加HA结合序列或通过在HA和细胞结合基序之间插入多接头结构域来修饰肽。
具体目标 3:测试肽涂层在促进内源性 MSC 粘附和分化、从而增强骨形成方面的功效。大鼠胫骨植入模型将用于测试肽的体内功效。
具体目标 4:确定是否可以通过在支架上预加载 MSC 来改善骨整合。公共健康相关性:本研究的主要目标是优化常用于关节假体和骨替代应用的磷酸钙生物材料的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan L Bellis其他文献
Using inositol as a biocompatible ligand for efficient transgene expression
使用肌醇作为生物相容性配体进行高效转基因表达
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:8
- 作者:
Lei Zhang;Susan L Bellis;Yiwen Fan;Yunkun Wu - 通讯作者:
Yunkun Wu
Susan L Bellis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan L Bellis', 18)}}的其他基金
Sialylation-dependent mechanisms driving pancreatic cancer progression
唾液酸化依赖机制驱动胰腺癌进展
- 批准号:
10468125 - 财政年份:2018
- 资助金额:
$ 24.28万 - 项目类别:
Sialylation-dependent mechanisms driving pancreatic cancer progression
唾液酸化依赖机制驱动胰腺癌进展
- 批准号:
10242715 - 财政年份:2018
- 资助金额:
$ 24.28万 - 项目类别:
Glycan control of stem cell-associated pathways in pancreatic cancer
胰腺癌中干细胞相关通路的聚糖控制
- 批准号:
8986782 - 财政年份:2015
- 资助金额:
$ 24.28万 - 项目类别:
Glycosylation-dependent mechanisms regulating ovarian tumor cell survival
糖基化依赖性调节卵巢肿瘤细胞存活的机制
- 批准号:
8718244 - 财政年份:2014
- 资助金额:
$ 24.28万 - 项目类别:
Coupling osteoinductive factors to graft materials to promote osteoregeneration
将骨诱导因子与移植材料偶联以促进骨再生
- 批准号:
9110953 - 财政年份:2014
- 资助金额:
$ 24.28万 - 项目类别:
Coupling osteoinductive factors to graft materials to promote osteoregeneration
将骨诱导因子与移植材料偶联以促进骨再生
- 批准号:
8782796 - 财政年份:2014
- 资助金额:
$ 24.28万 - 项目类别:
Glycosylation-dependent mechanisms regulating ovarian tumor cell survival
糖基化依赖性调节卵巢肿瘤细胞存活的机制
- 批准号:
9042398 - 财政年份:2014
- 资助金额:
$ 24.28万 - 项目类别:
Glycosylation-dependent mechanisms regulating ovarian tumor cell phenotype
糖基化依赖性调节卵巢肿瘤细胞表型的机制
- 批准号:
10590617 - 财政年份:2014
- 资助金额:
$ 24.28万 - 项目类别:
Glycosylation-dependent mechanisms regulating ovarian tumor cell phenotype
糖基化依赖性调节卵巢肿瘤细胞表型的机制
- 批准号:
10376286 - 财政年份:2014
- 资助金额:
$ 24.28万 - 项目类别:
Functionalizing Hydroxyapatite With Proadhesive Peptides
用促粘附肽功能化羟基磷灰石
- 批准号:
7125118 - 财政年份:2005
- 资助金额:
$ 24.28万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 24.28万 - 项目类别:
Sugar-coating our way to genetically modified mesenchymal stem cells: Glycocalyx-inspired cell culture substrates that prime mesenchymal stem cells for polycation-mediated pDNA delivery.
糖衣我们的转基因间充质干细胞之路:糖萼启发的细胞培养基质为间充质干细胞提供聚阳离子介导的 pDNA 传递。
- 批准号:
10647120 - 财政年份:2023
- 资助金额:
$ 24.28万 - 项目类别:
Targeted prostanoid inhibition as an anti-inflammatory therapy for diabetic retinopathy
靶向前列腺素抑制作为糖尿病视网膜病变的抗炎治疗
- 批准号:
10751497 - 财政年份:2023
- 资助金额:
$ 24.28万 - 项目类别:
Siglecs in the Porcine Oviduct: Roles in the Sperm Reservoir and Sperm Immune Response
猪输卵管中的 Siglecs:在精子库和精子免疫反应中的作用
- 批准号:
10607761 - 财政年份:2023
- 资助金额:
$ 24.28万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 24.28万 - 项目类别: