The Use of Probabilistic Climate Data to Future-Proof Design Decisions in the Buildings Sector

使用概率气候数据做出面向未来的建筑行业设计决策

基本信息

  • 批准号:
    EP/F038305/1
  • 负责人:
  • 金额:
    $ 65.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

It is well known that climate change will have a significant impact on UK building design and energy use. It is also known, that the current standard reference year and design summer year (these are the weather files used by industry-standard computer models of buildings), being assembled from data collected only up to 1995, do not represent even the current UK climate. The building design community is therefore highly exposed to the possibility of occupant dissatisfaction and possible litigation. In addition, most buildings are not being designed to cope with increased variability in a warming climate. The desire to use probabilistic scenarios will not solve this unless either new reference years are created, made widely available and guidance given on which ones to use and when/or, totally new methods are developed. Even this is likely to be unsuccessful in driving adaptation decisions unless a full understanding of how designers might use such data is gained and a consistent way found of examining any changes in costs. There is therefore a need to simultaneously study not only probabilistic data sets for the built environment, but also how such information can be used to drive adaptation decisions. In many ways the move to probabilistic outputs by such groups as UKCIP presents an opportunity. The ability to create bespoke probabilistic reference years using, for example a weather generator, changes the way problems can be tackled and even how the client or architect thinks about such issues.An interdisciplinary approach is envisaged with the project separated into seven work packages:1. It has been identified that high resolution climate information has many practical applications for building design/(for example the BETWIXT project). However, the best way to downscale climate model information for any particular application is not clear. We will agree a process for the creation of new reference years for the period 2010 to 2080, with hourly time steps. This will make use of the UKCIP08 probability distribution functions and UKCIP08's weather generator, but with the addition of wind direction estimates.2. Consider how in theory, probabilistic climate data is best used to produce useful and accurate predictions of internal environments and energy use. 3. Create a large set of reference years compatible with common building simulation codes based on the latest probabilistic results. 4. Given the complex decision-making context of future proofing, an additional aim of the project is to better understand the organisational, social, and psychological factors that might influence the willingness of the industry to adopt new technologies/practices. Research will focus on how engineers work in practice, the time and knowledge constraints they work under, and the motivational factors that are likely to influence decisions about using future-proofing technology. 5. There is the need to fully understand the range of possible results in building performance that can be generated by UKCIP08 and then to finalise a much smaller sub-set of probabilistic reference years (PRYs), that reflect the needs and practices of design teams working within a commercial environment. (These files would be delivered in a format consistent with the requirements of common building simulation codes.) 6. Examination of the effect of climate change on UK building design and refurbishment. The smaller PRY subset would be used to examine how parameters such as thermal mass and glazed fraction can be used most effectively to improve thermal comfort and reduce energy demand for a range of built forms and uses, and produce case studies. 7. The economic costs of various design strategies will also need to be examined, for example the increased cost of cooling, as will the cost to architectural practices of altering their working practices in order to make use of probabilistic data.
众所周知,气候变化将对英国的建筑设计和能源使用产生重大影响。众所周知,当前的标准参考年度和设计夏季(这些是行业标准的建筑物计算机模型所使用的天气文件),该建筑物仅从收集到1995年收集的数据组装,甚至不代表当前的英国气候。因此,建筑设计界高度暴露于居住者不满意和可能的诉讼的可能性。此外,大多数建筑物的设计不是为了应对变暖气候中的可变性。除非创建新的参考年份,广泛可用,并给出有关使用哪些新的参考年份以及何时开发全新的方法,否则使用概率方案的愿望将无法解决此问题。即使对设计师如何获得此类数据的全面了解以及发现成本上任何变化的一致方法,即使这也可能会在推动适应决策方面取得不成功。因此,不仅需要同时研究建筑环境的概率数据集,而且还需要研究如何使用此类信息来推动适应决策。在许多方面,UKCIP诸如UKCIP群体提出的概率产出的转变为机会提供了机会。使用天气生成器来创建定制的概率参考年份的能力,可以改变问题的方式,甚至可以解决客户或建筑师如何在此类问题上思考。一种跨学科的方法被设想,该项目分为七个工作包:1。已经确定,高分辨率的气候信息在建筑设计/(例如Betwixt项目)中具有许多实际应用。但是,对于任何特定应用程序,降低气候模型信息的最佳方法尚不清楚。我们将同意在2010年至2080年创建新的参考年度的过程,并采用小时的时间步骤。这将利用UKCIP08的概率分布功能和UKCIP08的天气生成器,但随着风向估算的增加。2。从理论上讲,如何最好地使用概率气候数据来产生内部环境和能源使用的有用和准确的预测。 3。根据最新的概率结果,创建与通用建筑模拟代码兼容的大量参考年度。 4.鉴于未来证明的复杂决策背景,该项目的另一个目的是更好地了解可能影响该行业采用新技术/实践的组织,社会和心理因素。研究将重点介绍工程师在实践中的工作方式,他们在工作中工作的时间和知识限制以及可能影响对使用未来技术的决策的动机因素。 5。有必要充分了解UKCIP08可以产生的建筑绩效结果的范围,然后最终确定较小的概率参考年份(PRYS)的子集,这反映了在商业环境中工作的设计团队的需求和实践。 (这些文件将以符合共同建筑模拟代码的要求的格式传递。)6。检查气候变化对英国建筑设计和翻新的影响。较小的pry子集将用于检查如何最有效地使用诸如热质量和釉面的参数,以改善热舒适度并减少对一系列建筑形式和用途的能源需求,并产生案例研究。 7。还需要检查各种设计策略的经济成本,例如,冷却成本增加,建筑实践的成本也将改变其工作实践以利用概率数据。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of the urban heat island for UK climate change projections
The creation of wind speed and direction data for the use in probabilistic future weather files
创建风速和风向数据以用于未来概率天气文件
On the creation of future probabilistic design weather years from UKCP09
The appropriate spatial resolution of future weather files for building simulation
用于建筑模拟的未来天气文件的适当空间分辨率
The future that may (or may not) come: How framing changes responses to uncertainty in climate change communications
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Coley其他文献

Putting a face to a name: Telephone contact as part of a blended approach to probation supervision
名字与面孔:电话联系作为缓刑监督混合方法的一部分
  • DOI:
    10.1177/02645505211050870
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Jane Dominey;David Coley;K. Devitt;Jess Lawrence 
  • 通讯作者:
    Jess Lawrence 
Probation staff supervision: Valuing ‘me time’ within congested spaces
缓刑人员监督:重视拥挤空间内的“自我时间”
  • DOI:
    10.1177/0264550520926581
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Coley
  • 通讯作者:
    David Coley
Improving the shelter design process via a shelter assessment matrix
  • DOI:
    10.1016/j.pdisas.2024.100354
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Noorullah Kuchai;Dima Albadra;Steve Lo;Sara Saied;Natalia Paszkiewicz;Paul Shepherd;Sukumar Natarajan;John Orr;Jason Hart;Kemi Adeyeye;David Coley
  • 通讯作者:
    David Coley
Contemporary probation practice: Some reflections on social class
当代缓刑实践:对社会阶层的一些思考
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    David Coley
  • 通讯作者:
    David Coley
A socio-mathematical approach to exploring conflicts between energy retrofit and perceived heritage character
  • DOI:
    10.1016/j.buildenv.2018.03.045
  • 发表时间:
    2018-06-15
  • 期刊:
  • 影响因子:
  • 作者:
    Reyyan S. Okutan;Tristan Kershaw;Manuel Herrera Fernandez;David Coley
  • 通讯作者:
    David Coley

David Coley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Coley', 18)}}的其他基金

Healthy housing for the Displaced
为流离失所者提供健康的住房
  • 批准号:
    EP/P029175/1
  • 财政年份:
    2017
  • 资助金额:
    $ 65.75万
  • 项目类别:
    Research Grant
The creation of localized current and future weather for the built environment
为建筑环境创建本地化的当前和未来天气
  • 批准号:
    EP/M021890/1
  • 财政年份:
    2015
  • 资助金额:
    $ 65.75万
  • 项目类别:
    Research Grant
Energy literacy through an intelligent home energy advisor (ENLITEN)
通过智能家庭能源顾问 (ENLITEN) 提高能源素养
  • 批准号:
    EP/K002724/1
  • 财政年份:
    2012
  • 资助金额:
    $ 65.75万
  • 项目类别:
    Research Grant

相似国自然基金

中国东部夏季旱涝的多模式动力-统计概率预测研究
  • 批准号:
    41705074
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于CMIP5模式西北太平洋热带气旋活动的概率预估研究
  • 批准号:
    41475091
  • 批准年份:
    2014
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
变化环境下广东旱涝时空变化规律与风险概率研究
  • 批准号:
    41371498
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
降尺度与多模式结合的中国未来气候变化概率预估及其不确定性研究
  • 批准号:
    41230528
  • 批准年份:
    2012
  • 资助金额:
    310.0 万元
  • 项目类别:
    重点项目
小麦生长发育对极端气象的响应机制及区域生产的集合概率预测
  • 批准号:
    41071030
  • 批准年份:
    2010
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Score-Based Diffusion Models for Probabilistic Forecasting of Weather and Climate
职业:用于天气和气候概率预测的基于分数的扩散模型
  • 批准号:
    2238375
  • 财政年份:
    2023
  • 资助金额:
    $ 65.75万
  • 项目类别:
    Standard Grant
Probabilistic Models for Infrastructure Risk Assessment and Management in the Changing Climate
气候变化中基础设施风险评估和管理的概率模型
  • 批准号:
    RGPIN-2022-03556
  • 财政年份:
    2022
  • 资助金额:
    $ 65.75万
  • 项目类别:
    Discovery Grants Program - Individual
Development of probabilistic risk assessment method for aquatic environmental disasters based on large ensemble climate forecast data
基于大集合气候预报数据的水生环境灾害概率风险评估方法开发
  • 批准号:
    21K04276
  • 财政年份:
    2021
  • 资助金额:
    $ 65.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of probabilistic risk assessment method using climate ensembles to consider both flood and drought disasters
开发利用气候集合考虑洪水和干旱灾害的概率风险评估方法
  • 批准号:
    21J01854
  • 财政年份:
    2021
  • 资助金额:
    $ 65.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
  • 批准号:
    2151651
  • 财政年份:
    2021
  • 资助金额:
    $ 65.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了