Computational & Biochemical Studies of the Malarial Blood Stage Invasion Complex
计算型
基本信息
- 批准号:7545695
- 负责人:
- 金额:$ 4.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-12-01 至 2010-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesivesAffectAldehyde-LyasesAnemiaAntimalarialsBindingBiochemicalBiochemistryBiological AssayBiologyBloodCell membraneCell surfaceCellsCerebral MalariaCerebrumCessation of lifeCiliaCommunicable DiseasesComplexComputational BiologyComputer SimulationCrystallographyDiseaseDockingDrug resistanceEconomic DevelopmentEnzymesErythrocytesFamilyFeverFlagellaFructosediphosphate AldolaseFutureHomology ModelingHumanImageryIn VitroInvadedInvasiveKnowledgeLaboratoriesMalariaMembraneMethodologyModelingMolecular ModelsMotorMovementMyosin ATPaseOrganOrganismPainParasitesPlasmodiumPlasmodium falciparumProtein FamilyProteinsProtozoaPublic HealthPublishingReportingResearchResolutionSite-Directed MutagenesisSporozoitesStagingStructureTailTechniquesTrainingUniversitiesWashingtonWorkbaseblood vessel occlusioncell motilitycomputer studiesdesigndrug discoveryinterdisciplinary approachmembermortalitynovelpathogensocialsuccessthree dimensional structure
项目摘要
DESCRIPTION (provided by applicant): While effective treatments for malaria exist, parasite resistance to these drugs is growing rapidly, and there is a critical need for new mechanisms to combat this disease. Several recent studies indicate that the motile and invasive machinery of the parasite represents a promising new target for drug discovery. In order to facilitate future drug discovery projects targeting the malarial motor and invasion machinery, this proposal aims to use an interdisciplinary approach to elucidate the structural features of a part of this complex expressed in Plasmodium falciparum merozoites - the invasive blood stage of this parasite, andthe causative agent of cerebral malaria and the majority of malarial mortality. Plasmodia, like other apicomplexan protozoa, employ a mechanism of substrate-dependent gliding motility that does not depend on cilia or flagella. Gliding and host cell invasion are crucial parasite functions and increasingly appear to be driven by an actin/myosin motor located beneath the organism's plasma membrane. Myosin generates movement by forcefully displacing actin. In Plasmodium merozoites, this force is transmitted - viatheactin-binding, glycolytic enzyme, aldolase - to MTRAP, a type I trans-membrane molecule bearing adhesive domains capable of interacting with host-cell surfaces. The parasite uses this force to actively invade human red blood cells. This proposal aims to elucidate the structural features of the MTRAP-aldolase interaction in Plasmodium falciparum merozoites via the biochemical characterization of this complex in vitro and the three-dimensional resolution of the MTRAP-aldolase interface in silico. A combination of site-directed mutagenesis, homology modeling, and computational docking will be used to identify and visualize key contacts between the two proteins. The detailed picture of the structural basis for the MTRAP-aldolase interaction thus obtained will serve as the platform for the future rational design of anti-malarial agents. PUBLIC HEALTH RELEVANCE: Malarial disease affects hundreds of millions of people worldwide - afflicting them with anemia, excruciating pain, fever, and in severe cases, cerebral blood vessel occlusion, organ damage, and death. The research proposed here serves as an ideal training opportunity in computational biology and the biochemistry of a global infectious disease, while simultaneously increasing the current knowledge of a key aspect of malarial biology, and facilitating the design of novel, safe, and effective anti-malarial agents.
描述(由申请人提供):虽然存在有效的疟疾治疗方法,但对这些药物的寄生虫耐药性正在迅速增长,并且对应对这种疾病的新机制迫切需要。最近的几项研究表明,寄生虫的运动和侵入性机制代表了一个有希望的药物发现目标。为了促进针对疟疾运动和入侵机械的未来药物发现项目,该提议旨在使用跨学科的方法来阐明该复合物的一部分的结构特征,该复合物以恶性疟原虫的纯净植物形式表达,这是该寄生虫的侵入性血液阶段 - 念珠菌和念珠菌和多个多元性的念珠菌。与其他Apicomplexan原生动物一样,疟原虫采用了底物依赖性滑行运动的机制,不依赖于纤毛或鞭毛。滑行和宿主细胞的侵袭是至关重要的寄生虫功能,似乎越来越多地由位于生物体质膜下方的肌动蛋白/肌球蛋白电动机驱动。肌球蛋白通过有力取代肌动蛋白而产生运动。在疟原虫中,这种力是通过抑制蛋白结合,糖酵解酶,醛糖酶 - 到MTRAP的,这是I型的I型跨膜分子,具有能够与宿主细胞表面相互作用的I型跨膜分子。寄生虫利用这种力积极入侵人类的红细胞。该建议旨在通过这种复合物体外的生化表征和硅胶中Mtrap-溶解酶界面的三维分辨率来阐明恶性疟原虫植物元素中MTRAP-溶解酶相互作用的结构特征。位置定向的诱变,同源性建模和计算对接的组合将用于识别和可视化两种蛋白质之间的关键接触。因此获得的MTRAP-溶解酶相互作用的结构基础的详细图片将作为抗疟疾剂的未来合理设计的平台。公共卫生相关性:疟疾疾病会影响全球数亿人 - 使他们患有贫血,痛苦,发烧,严重的情况,脑血管阻塞,器官损害和死亡。这里提出的研究是计算生物学和全球传染病的生物化学的理想培训机会,同时同时增加了对疟疾生物学关键方面的当前知识,并促进了新颖,安全,有效的抗癌症的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sondra Maureen Nemetski其他文献
Sondra Maureen Nemetski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
- 批准号:22302110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Role of the S100 Family of Proteins in Lens Physiology and Cataract
S100 蛋白家族在晶状体生理学和白内障中的作用
- 批准号:
10560827 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Direct and Quantitative Probing of Desmosome Mechanotransduction
桥粒力转导的直接定量探测
- 批准号:
10713124 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Cannabinoid Signaling Interactions During Axon Development in situ
轴突原位发育过程中大麻素信号相互作用
- 批准号:
10654243 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Polyphosphate and cardiac fibrosis by Trypanosoma cruzi
克氏锥虫的多磷酸盐与心脏纤维化
- 批准号:
10740934 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别: