The Physics of Polymer Photonic Devices: Experiment and Theory

聚合物光子器件物理学:实验与理论

基本信息

  • 批准号:
    EP/E062636/1
  • 负责人:
  • 金额:
    $ 39.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Remarkable progress has been made over the last decade in making optical sources such as LEDs and lasers out of flexible, plastic materials. This has a wide range of potential applications, such as roll up TV displays or having data communications systems woven into your clothing. The technology of polymer LEDs has now matured to the degree that plastic light-emitting displays are available as commercial products. Plastic lasers, optical amplifiers and other photonic devices are much less well developed. But these offer huge potential as sophisticated, yet inexpensive, visible light sources. We have reached a stage now where we have demonstrated this potential in the laboratory, and in order to take the next major step forward to practical devices we urgently need a deeper understanding of the behaviour of these materials at the microscopic level. The physics of how the polymer chains interact with intense light involves a rich combination of competing processes. The cumulative effect of these processes in devices is not yet well understood. This proposal seeks to develop this understanding by bringing together the expertise of two groups: one who are experts in measuring the optical performance of these polymers and in their application for photonics, and the other who are experts in the theory of optical materials. Through a combination of theory and experiment we will aim to understand the complex optical interactions of semiconducting polymers, and exploit them in new and more sophisticated ways. This would help us to optimise the performance (e.g. speed and efficiency) of current devices; but more significantly it would enable a new generation of photonic devices based on these materials. We will make optical measurements of how these polymers respond to light under device conditions. By doing this we can understand, for example, the loss mechanisms that increase the power required by a laser, or the processes that limit pulse durations and their propagation. Using quantum mechanics we can also simulate the microscopic physics which gives rise to these effects. We can then try to reduce the losses and improve operation, using our new knowledge. This approach of combining a microscopic quantum theory with experiment has previously been used to greatly improve inorganic semiconductor devices. Indeed it proved crucial to the development of optimised inorganic diode lasers such as those used in DVD players and laser printers. By bringing together complementary expertise, we hope to build a new level of understanding of organic semiconductors. To demonstrate the advantages of our approach, we will undertake two pilot studies. First we will develop optical switches with which we may use one light pulse to pass or block the propagation of another pulse. For such a device to work well, we will need a very fast process that can switch cleanly between on and off-states, while not distorting the propagating light pulses- a good understanding of the material physics will therefore be essential. In the second pilot study, we will aim to observe and explore an exotic phenomenon known as slow light , which has previously been found in inorganic semiconductors. This effect delays the propagation of light through a material, and may in the future form a basis for optical signal processors. The model will also be able to guide and inform the design of many other sophisticated photonic devices, including short-pulse plastic lasers, optical amplifiers and detectors; all key components of plastic photonic systems of the future.
在过去的十年中,取得了显着的进展,以通过灵活的塑料材料制作出光学来源(例如LED和激光)。这具有广泛的潜在应用程序,例如滚动电视显示或将数据通信系统编织到您的衣服中。聚合物LED的技术现在已经成熟到塑料发光显示器作为商业产品可用的程度。塑料激光器,光学放大器和其他光子设备的发育不佳。但是,这些具有巨大的潜力,即精致而又便宜,可见的光源。现在,我们已经到达了一个阶段,我们已经在实验室中证明了这一潜力,为了向实用设备迈出下一个重大一步,我们迫切需要在微观层面上更深入地了解这些材料的行为。聚合物链如何与强光相互作用的物理学涉及竞争过程的丰富组合。这些过程在设备中的累积效应尚不清楚。该提案旨在通过汇集两个小组的专业知识来发展这种理解:一个是测量这些聚合物的光学性能以及其光子学的应用,而另一种是光学材料理论的专家。通过理论和实验的结合,我们将旨在了解半导体聚合物的复杂光学相互作用,并以新的,更复杂的方式利用它们。这将有助于我们优化当前设备的性能(例如速度和效率);但是,更重要的是,它将基于这些材料实现新一代的光子设备。我们将对这些聚合物在设备条件下如何响应光进行光学测量。通过这样做,我们可以理解,例如,增加激光器所需的功率的损失机制,或限制脉冲持续时间及其传播的过程。使用量子力学,我们还可以模拟产生这些影响的微观物理学。然后,我们可以尝试使用我们的新知识来减少损失并改善运营。这种将微观量子理论与实验相结合的方法已被用来极大地改善无机半导体设备。确实,它证明这对于开发优化的无机二极管激光器(例如在DVD播放器和激光打印机中使用的激光器)至关重要。通过汇集互补的专业知识,我们希望建立对有机半导体的新水平。为了证明我们方法的优势,我们将进行两项试点研究。首先,我们将开发光学开关,我们可以使用一个光脉冲通过或阻止另一个脉冲的传播。为了使这样的设备运行良好,我们将需要一个非常快速的过程,可以在状态和关闭状态之间干净地切换,同时不扭曲传播光脉冲 - 因此,对材料物理的良好理解是必不可少的。在第二项试点研究中,我们将旨在观察和探索一种被称为慢光的外来现象,该现象以前在无机半导体中发现。这种效果延迟了通过材料传播光,并且将来可能是光信号处理器的基础。该模型还将能够指导和告知许多其他复杂的光子设备的设计,包括短脉冲塑料激光器,光学放大器和探测器;未来塑料光子系统的所有关键组成部分。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exciton-Exciton Annihilation in Mixed-Phase Polyfluorene Films
  • DOI:
    10.1002/adfm.200900879
  • 发表时间:
    2010-01-08
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Shaw, Paul E.;Ruseckas, Arvydas;Samuel, Ifor D. W.
  • 通讯作者:
    Samuel, Ifor D. W.
Subpicosecond Exciton Dynamics in Polyfluorene Films from Experiment and Microscopic Theory
  • DOI:
    10.1021/acs.jpcc.5b00680
  • 发表时间:
    2015-05-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Denis, Jean-Chrisophe;Schumacher, Stefan;Galbraith, Ian
  • 通讯作者:
    Galbraith, Ian
High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer
  • DOI:
    10.1002/adma.200801930
  • 发表时间:
    2009-01-05
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Amarasinghe, Dimali;Ruseckas, Arvydas;Samuel, Ifor D. W.
  • 通讯作者:
    Samuel, Ifor D. W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ifor Samuel其他文献

Ifor Samuel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ifor Samuel', 18)}}的其他基金

Self-Illuminating Holograms for Human-Computer Interaction
用于人机交互的自发光全息图
  • 批准号:
    EP/X018067/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Novel Polymers of Intrinsic Microporosity for use as photonic materials
用作光子材料的新型固有微孔聚合物
  • 批准号:
    EP/V027840/1
  • 财政年份:
    2022
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
ESPRC-JSPS Core-to-Core Grant Application
ESPRC-JSPS 核心到核心拨款申请
  • 批准号:
    EP/R035164/1
  • 财政年份:
    2018
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Self-assembled organic photovoltaic materials
自组装有机光伏材料
  • 批准号:
    EP/L012294/1
  • 财政年份:
    2014
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
The Influence of Excited State Physics in Conjugated Polymer Devices
激发态物理对共轭聚合物器件的影响
  • 批准号:
    EP/J009016/1
  • 财政年份:
    2012
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Synergistic tailoring of flavins and quantum dots for solar cell applications
用于太阳能电池应用的黄素和量子点的协同定制
  • 批准号:
    EP/I00243X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Ageing of printable polymer solar cells
可印刷聚合物太阳能电池的老化
  • 批准号:
    EP/I013288/1
  • 财政年份:
    2011
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Implantable Optoelectronic Devices for Neurophysiology
用于神经生理学的植入式光电设备
  • 批准号:
    G0802573/1
  • 财政年份:
    2010
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Hybrid organic semiconductor/gallium nitride/CMOS smart pixel arrays
混合有机半导体/氮化镓/CMOS智能像素阵列
  • 批准号:
    EP/F059922/1
  • 财政年份:
    2008
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Multilayer photopatterned dendrimer LEDs for colour displays
用于彩色显示器的多层光图案化树枝状聚合物 LED
  • 批准号:
    EP/F032099/1
  • 财政年份:
    2008
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant

相似国自然基金

剪切诱导的长程有序超分子聚合物复合光子晶体的构筑及有序机制研究
  • 批准号:
    52373075
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于非周期型光子晶体的半透明聚合物太阳能电池性能及色度机制研究
  • 批准号:
    62241401
  • 批准年份:
    2022
  • 资助金额:
    10.00 万元
  • 项目类别:
    专项项目
基于乳液组装粒子簇的超球结构调控制备高饱和度的聚合物光子玻璃
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于乳液组装粒子簇的超球结构调控制备高饱和度的聚合物光子玻璃
  • 批准号:
    52203273
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
高晶化胶体光子晶体及其聚合物涂层的喷涂制备与应用研究
  • 批准号:
    22172054
  • 批准年份:
    2021
  • 资助金额:
    60.00 万元
  • 项目类别:
    面上项目

相似海外基金

Polymer photonic devices based on mixed ionic/electronic conductors: device and materials physics
基于混合离子/电子导体的聚合物光子器件:器件和材料物理
  • 批准号:
    RGPIN-2015-05344
  • 财政年份:
    2019
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer photonic devices based on mixed ionic/electronic conductors: device and materials physics
基于混合离子/电子导体的聚合物光子器件:器件和材料物理
  • 批准号:
    RGPIN-2015-05344
  • 财政年份:
    2018
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer photonic devices based on mixed ionic/electronic conductors: device and materials physics
基于混合离子/电子导体的聚合物光子器件:器件和材料物理
  • 批准号:
    RGPIN-2015-05344
  • 财政年份:
    2017
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental Studies of Excitons and Charge-Carriers in Organic Materials Relevant to Organic Electronics
有机电子相关有机材料中激子和载流子的基础研究
  • 批准号:
    17H06791
  • 财政年份:
    2017
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Polymer photonic devices based on mixed ionic/electronic conductors: device and materials physics
基于混合离子/电子导体的聚合物光子器件:器件和材料物理
  • 批准号:
    RGPIN-2015-05344
  • 财政年份:
    2016
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了