The Physics of Polymer Photonic Devices: Experiment and Theory

聚合物光子器件物理学:实验与理论

基本信息

  • 批准号:
    EP/E062636/1
  • 负责人:
  • 金额:
    $ 39.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Remarkable progress has been made over the last decade in making optical sources such as LEDs and lasers out of flexible, plastic materials. This has a wide range of potential applications, such as roll up TV displays or having data communications systems woven into your clothing. The technology of polymer LEDs has now matured to the degree that plastic light-emitting displays are available as commercial products. Plastic lasers, optical amplifiers and other photonic devices are much less well developed. But these offer huge potential as sophisticated, yet inexpensive, visible light sources. We have reached a stage now where we have demonstrated this potential in the laboratory, and in order to take the next major step forward to practical devices we urgently need a deeper understanding of the behaviour of these materials at the microscopic level. The physics of how the polymer chains interact with intense light involves a rich combination of competing processes. The cumulative effect of these processes in devices is not yet well understood. This proposal seeks to develop this understanding by bringing together the expertise of two groups: one who are experts in measuring the optical performance of these polymers and in their application for photonics, and the other who are experts in the theory of optical materials. Through a combination of theory and experiment we will aim to understand the complex optical interactions of semiconducting polymers, and exploit them in new and more sophisticated ways. This would help us to optimise the performance (e.g. speed and efficiency) of current devices; but more significantly it would enable a new generation of photonic devices based on these materials. We will make optical measurements of how these polymers respond to light under device conditions. By doing this we can understand, for example, the loss mechanisms that increase the power required by a laser, or the processes that limit pulse durations and their propagation. Using quantum mechanics we can also simulate the microscopic physics which gives rise to these effects. We can then try to reduce the losses and improve operation, using our new knowledge. This approach of combining a microscopic quantum theory with experiment has previously been used to greatly improve inorganic semiconductor devices. Indeed it proved crucial to the development of optimised inorganic diode lasers such as those used in DVD players and laser printers. By bringing together complementary expertise, we hope to build a new level of understanding of organic semiconductors. To demonstrate the advantages of our approach, we will undertake two pilot studies. First we will develop optical switches with which we may use one light pulse to pass or block the propagation of another pulse. For such a device to work well, we will need a very fast process that can switch cleanly between on and off-states, while not distorting the propagating light pulses- a good understanding of the material physics will therefore be essential. In the second pilot study, we will aim to observe and explore an exotic phenomenon known as slow light , which has previously been found in inorganic semiconductors. This effect delays the propagation of light through a material, and may in the future form a basis for optical signal processors. The model will also be able to guide and inform the design of many other sophisticated photonic devices, including short-pulse plastic lasers, optical amplifiers and detectors; all key components of plastic photonic systems of the future.
过去十年来,在利用柔性塑料材料制造 LED 和激光器等光源方面取得了显着进展。这具有广泛的潜在应用,例如卷起电视显示器或将数据通信系统编织到衣服中。聚合物 LED 技术现已成熟,塑料发光显示器已可作为商业产品使用。塑料激光器、光学放大器和其他光子器件的开发程度要低得多。但它们作为复杂但廉价的可见光源具有巨大的潜力。我们现在已经达到了在实验室中展示这种潜力的阶段,为了在实用设备方面迈出下一步,我们迫切需要在微观层面上更深入地了解这些材料的行为。聚合物链如何与强光相互作用的物理过程涉及丰富的竞争过程组合。这些过程在设备中的累积效应尚不清楚。该提案旨在通过汇集两个小组的专业知识来发展这种理解:一个是测量这些聚合物的光学性能及其光子学应用的专家,另一个是光学材料理论的专家。通过理论和实验的结合,我们的目标是了解半导体聚合物的复杂光学相互作用,并以新的、更复杂的方式利用它们。这将帮助我们优化当前设备的性能(例如速度和效率);但更重要的是,它将使得基于这些材料的新一代光子器件成为可能。我们将对这些聚合物在设备条件下如何响应光进行光学测量。通过这样做,我们可以了解例如增加激光器所需功率的损耗机制,或限制脉冲持续时间及其传播的过程。使用量子力学,我们还可以模拟产生这些效应的微观物理。然后,我们可以尝试利用我们的新知识来减少损失并改善运营。这种将微观量子理论与实验相结合的方法此前已被用来极大地改进无机半导体器件。事实上,它对于开发优化的无机二极管激光器(例如用于 DVD 播放器和激光打印机的激光器)至关重要。通过汇集互补的专业知识,我们希望对有机半导体的理解达到一个新的水平。为了证明我们方法的优势,我们将进行两项试点研究。首先,我们将开发光学开关,通过它我们可以使用一个光脉冲来传递或阻止另一个脉冲的传播。为了让这样的设备正常工作,我们需要一个非常快速的过程,可以在开启和关闭状态之间干净地切换,同时不扭曲传播的光脉冲——因此,对材料物理学的良好理解至关重要。在第二项试点研究中,我们的目标是观察和探索一种被称为慢光的奇异现象,这种现象以前曾在无机半导体中发现过。这种效应延迟了光在材料中的传播,并且可能在未来形成光信号处理器的基础。该模型还将能够指导和指导许多其他复杂光子器件的设计,包括短脉冲塑料激光器、光学放大器和探测器;未来塑料光子系统的所有关键组件。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exciton-Exciton Annihilation in Mixed-Phase Polyfluorene Films
  • DOI:
    10.1002/adfm.200900879
  • 发表时间:
    2010-01-08
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Shaw, Paul E.;Ruseckas, Arvydas;Samuel, Ifor D. W.
  • 通讯作者:
    Samuel, Ifor D. W.
Subpicosecond Exciton Dynamics in Polyfluorene Films from Experiment and Microscopic Theory
  • DOI:
    10.1021/acs.jpcc.5b00680
  • 发表时间:
    2015-05-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Denis, Jean-Chrisophe;Schumacher, Stefan;Galbraith, Ian
  • 通讯作者:
    Galbraith, Ian
High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer
  • DOI:
    10.1002/adma.200801930
  • 发表时间:
    2009-01-05
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Amarasinghe, Dimali;Ruseckas, Arvydas;Samuel, Ifor D. W.
  • 通讯作者:
    Samuel, Ifor D. W.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ifor Samuel其他文献

Ifor Samuel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ifor Samuel', 18)}}的其他基金

Self-Illuminating Holograms for Human-Computer Interaction
用于人机交互的自发光全息图
  • 批准号:
    EP/X018067/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Novel Polymers of Intrinsic Microporosity for use as photonic materials
用作光子材料的新型固有微孔聚合物
  • 批准号:
    EP/V027840/1
  • 财政年份:
    2022
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
ESPRC-JSPS Core-to-Core Grant Application
ESPRC-JSPS 核心到核心拨款申请
  • 批准号:
    EP/R035164/1
  • 财政年份:
    2018
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Self-assembled organic photovoltaic materials
自组装有机光伏材料
  • 批准号:
    EP/L012294/1
  • 财政年份:
    2014
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
The Influence of Excited State Physics in Conjugated Polymer Devices
激发态物理对共轭聚合物器件的影响
  • 批准号:
    EP/J009016/1
  • 财政年份:
    2012
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Synergistic tailoring of flavins and quantum dots for solar cell applications
用于太阳能电池应用的黄素和量子点的协同定制
  • 批准号:
    EP/I00243X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Ageing of printable polymer solar cells
可印刷聚合物太阳能电池的老化
  • 批准号:
    EP/I013288/1
  • 财政年份:
    2011
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Implantable Optoelectronic Devices for Neurophysiology
用于神经生理学的植入式光电设备
  • 批准号:
    G0802573/1
  • 财政年份:
    2010
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Hybrid organic semiconductor/gallium nitride/CMOS smart pixel arrays
混合有机半导体/氮化镓/CMOS智能像素阵列
  • 批准号:
    EP/F059922/1
  • 财政年份:
    2008
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant
Multilayer photopatterned dendrimer LEDs for colour displays
用于彩色显示器的多层光图案化树枝状聚合物 LED
  • 批准号:
    EP/F032099/1
  • 财政年份:
    2008
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Research Grant

相似国自然基金

聚合物光子晶体的辐射剂量学特性及图案化机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
新型电光聚合物在集成光子学中的应用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
新型双光子光敏保护分子的设计、合成与生物学应用
  • 批准号:
    61905110
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
硅-聚合物复合非线性光子晶体全光开关的研究
  • 批准号:
    11604057
  • 批准年份:
    2016
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
聚合物基无热化光波导微环生化传感器相关基础问题研究
  • 批准号:
    61077015
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Polymer photonic devices based on mixed ionic/electronic conductors: device and materials physics
基于混合离子/电子导体的聚合物光子器件:器件和材料物理
  • 批准号:
    RGPIN-2015-05344
  • 财政年份:
    2019
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer photonic devices based on mixed ionic/electronic conductors: device and materials physics
基于混合离子/电子导体的聚合物光子器件:器件和材料物理
  • 批准号:
    RGPIN-2015-05344
  • 财政年份:
    2018
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer photonic devices based on mixed ionic/electronic conductors: device and materials physics
基于混合离子/电子导体的聚合物光子器件:器件和材料物理
  • 批准号:
    RGPIN-2015-05344
  • 财政年份:
    2017
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental Studies of Excitons and Charge-Carriers in Organic Materials Relevant to Organic Electronics
有机电子相关有机材料中激子和载流子的基础研究
  • 批准号:
    17H06791
  • 财政年份:
    2017
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Polymer photonic devices based on mixed ionic/electronic conductors: device and materials physics
基于混合离子/电子导体的聚合物光子器件:器件和材料物理
  • 批准号:
    RGPIN-2015-05344
  • 财政年份:
    2016
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了