Implantable Optoelectronic Devices for Neurophysiology

用于神经生理学的植入式光电设备

基本信息

  • 批准号:
    G0802573/1
  • 负责人:
  • 金额:
    $ 13.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Techniques for the generation and manipulation of light have developed rapidly in recent years, leading to the possibility of optical systems miniaturised to a size previously considered unattainable. At the forefront of these developments are plastics that allow the manufacturing of light sources and detectors with a flexibility in colour, shape, size and structure that pushes the limits of miniature optical systems even further. We are barely beginning to understand the revolutionary impact of these technological advances on the medical field, as this requires a deep integration between physical and medical sciences. In this project, we will be exploring it by using miniature plastic light sources and detectors to build implantable devices, with the potential to transform the way we approach the understanding and the treatment of the nervous system. By measuring the blood colour around nerve cells, it is possible to monitor in very fine detail how oxygen is used by the nervous tissue. This, in turn, tells us about the tissue activity level. It is also possible to modify the nerve cells so that they respond to light. By illuminating them with light of a given colour, the modified cells are activated, and by using a different colour, the activity is temporarily stopped. Using light, we have therefore the capability to measure the activity of nerve cells, and to interact with such activity as needed. For this reason, miniaturized and implantable light manipulation devices have the potential to become invaluable tools in detecting how the nervous system works, and to implement corrections in its activity. Examples where this technology may offer solutions can be Parkinson?s Disease, epilepsy, or the augmentation of damaged parts of the nervous system. For it to be effective in real-life applications, the development of such a technology goes well beyond the capabilities of a single research group. The project will therefore aim to establish a stable collaboration between physicists/engineers and neurosceintists/medical doctors The collaborative research will start by developing plastic light sources and detectors tailored to the needs of nerve cell analysis and manipulation. We will then explore the suitability of such devices for long-term implants, by checking if they may cause damage to the nerve tissue structure or to the way the tissue works. Finally, we will demonstrate a simple application, in which the light sources and the detectors will be used to measure an actual nerve or brain signal.
近年来,用于发光和操纵的技术已经迅速发展,从而导致将光学系统微型化的可能性变为先前被认为是无法实现的尺寸。这些发展的最前沿是塑料,可以在颜色,形状,尺寸和结构上灵活地制造光源和探测器,从而进一步推动微型光学系统的极限。 我们几乎开始了解这些技术进步对医学领域的革命性影响,因为这需要物理科学和医学科学之间的深入整合。在这个项目中,我们将通过使用微型塑料光源和探测器来构建可植入的设备来探索它,从而改变我们对神经系统的理解和治疗方式。通过测量神经细胞周围的血色,可以非常细节监测神经组织如何使用氧气。反过来,这告诉我们组织活性水平。也可以修改神经细胞,以便它们对光的反应。通过用给定颜色的光照明它们,可以激活修饰的细胞,并使用不同的颜色,暂时停止活动。因此,使用光,我们具有测量神经细胞活性并与需要的活动相互作用的能力。因此,微型和可植入的轻度操纵设备有可能成为检测神经系统如何工作的宝贵工具,并在其活动中实施校正。该技术可能提供解决方案的例子是帕金森氏病,癫痫病或神经系统受损部分受损的增加。为了使其在现实生活中有效,这种技术的开发远远超出了单个研究小组的能力。因此,该项目将旨在建立物理学家/工程师与神经智能医生/医生之间的稳定合作。合作研究将从开发塑料光源和根据神经细胞分析和操纵需求量身定制的塑料光源和探测器开始。然后,我们将通过检查是否可能损害神经组织结构或组织的工作方式来探索此类设备对长期植入物的适用性。最后,我们将展示一个简单的应用,其中光源和检测器将用于测量实际的神经或脑信号。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ifor Samuel其他文献

Ifor Samuel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ifor Samuel', 18)}}的其他基金

Self-Illuminating Holograms for Human-Computer Interaction
用于人机交互的自发光全息图
  • 批准号:
    EP/X018067/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Novel Polymers of Intrinsic Microporosity for use as photonic materials
用作光子材料的新型固有微孔聚合物
  • 批准号:
    EP/V027840/1
  • 财政年份:
    2022
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
ESPRC-JSPS Core-to-Core Grant Application
ESPRC-JSPS 核心到核心拨款申请
  • 批准号:
    EP/R035164/1
  • 财政年份:
    2018
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Self-assembled organic photovoltaic materials
自组装有机光伏材料
  • 批准号:
    EP/L012294/1
  • 财政年份:
    2014
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
The Influence of Excited State Physics in Conjugated Polymer Devices
激发态物理对共轭聚合物器件的影响
  • 批准号:
    EP/J009016/1
  • 财政年份:
    2012
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Synergistic tailoring of flavins and quantum dots for solar cell applications
用于太阳能电池应用的黄素和量子点的协同定制
  • 批准号:
    EP/I00243X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Ageing of printable polymer solar cells
可印刷聚合物太阳能电池的老化
  • 批准号:
    EP/I013288/1
  • 财政年份:
    2011
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Hybrid organic semiconductor/gallium nitride/CMOS smart pixel arrays
混合有机半导体/氮化镓/CMOS智能像素阵列
  • 批准号:
    EP/F059922/1
  • 财政年份:
    2008
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
Multilayer photopatterned dendrimer LEDs for colour displays
用于彩色显示器的多层光图案化树枝状聚合物 LED
  • 批准号:
    EP/F032099/1
  • 财政年份:
    2008
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
The Physics of Polymer Photonic Devices: Experiment and Theory
聚合物光子器件物理学:实验与理论
  • 批准号:
    EP/E062636/1
  • 财政年份:
    2008
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant

相似国自然基金

二维手性钙钛矿的磁性掺杂及其自旋光电子应用
  • 批准号:
    52373290
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于配体保护金纳米核壳团簇的单分子光电子器件理论研究和设计
  • 批准号:
    12304300
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于胶体量子点的双极注入界面及其在新型光电子器件中的应用
  • 批准号:
    12364054
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
矿物光电子协同微生物驱动土壤锑形态转化的电子传递机制与调控
  • 批准号:
    42377003
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
半导体矿物激发地杆菌直接接受光电子固碳的能量代谢机制
  • 批准号:
    42377254
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Porous Two-Dimensional Inorganic Semiconductors for Optoelectronic Devices
用于光电器件的多孔二维无机半导体
  • 批准号:
    DP240100961
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Discovery Projects
Light-emitting devices for next-generation optoelectronic applications
用于下一代光电应用的发光器件
  • 批准号:
    DE240100417
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Discovery Early Career Researcher Award
Novel 2D material hybrid photonic crystal nanocavity for optoelectronic devices
用于光电器件的新型二维材料混合光子晶体纳米腔
  • 批准号:
    24K17627
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Implantable Optoelectronic Devices for Unified Early Diagnosis and Treatment: Toward Creation of Optoelectronic Pharmacolog
用于统一早期诊断和治疗的植入式光电装置:迈向光电药理学的创建
  • 批准号:
    23H05450
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Elucidation of Luminescence Mechanisms in Carbon Dots and Their Application to Photonic-Structured Optoelectronic Devices
碳点发光机制的阐明及其在光子结构光电器件中的应用
  • 批准号:
    23KJ2166
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了