MRI+DTI-Based Tools for Analyzing White Matter Variation
基于 MRI DTI 的白质变化分析工具
基本信息
- 批准号:7470632
- 负责人:
- 金额:$ 52.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-23 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAgeAlgorithmsAnatomyAnisotropyAreaAtlasesBiologicalBiological PreservationBiological ProcessBiomedical ResearchBrainBrain NeoplasmsClinicalCollectionContractsControl GroupsCorpus CallosumCorticospinal TractsCountDataData SetDepthDevelopmentDiffuseDiffusionDiseaseEnsureEvaluationFeasibility StudiesFiberGliomaHIVHandHistologyHuman VolunteersImageImage AnalysisInjuryInternetLengthLesionLifeLiquid substanceLocationMacacaMagnetic ResonanceMagnetic Resonance ImagingMeasurementMeasuresMedical ImagingMethodsMetricModalityModelingMorphologic artifactsMotorMultiple SclerosisNervous system structureNumbersOperative Surgical ProceduresPathologyPathway interactionsPatientsPlayPopulationProcessPsychological TestsPublishingResearch PersonnelResearch Project GrantsRoleSimulateSoftware ToolsSolutionsStructureSystemTestingTimeTissuesValidationVariantWeightagedbasecohortcomputerized toolsdata modelingdensitydesigngray matterindium arsenideinnovationinterestmalemultidisciplinarynervous system disorderneural modelneuropathologyprototyperelating to nervous systemresearch studysexstatisticstooltool developmenttumorvalidation studiesvolunteerwhite matter
项目摘要
DESCRIPTION (provided by applicant): In this multidisciplinary project, a team of investigators will design and apply software tools that can simultaneously segment neural tissues and identify the locations of bundles of neural fibers in the brain. The tools will operate on combined structural and diffusion magnetic resonance (MR) datasets of the nervous system and will produce morphometric measures of each white matter (WM) structure, including its trajectory; cross section, which may vary along the trajectory; and fiber density.
The proposed software tools will globally model imaging datasets. Numerical algorithms will adjust the parameters of a model of neural tissues and WM structures until the model is consistent with all of the acquired imaging data and maintains anatomical constraints such as incompressibility and continuity of neural fibers. The tools will differ from current morphometric tools in several ways: they will be more automated; they will incorporate and use all of the complementary information available in the different MR modalities; and they will not have the inaccuracies that are inherent to most current tractography methods.
This research project is innovative in several ways. First, the WM measures will be comparable across subjects without image-level registration because parameters based on WM structures can be compared directly. Second, the investigators will use inverse solution methods to model the multi-valued volume images, globally resolve ambiguities in morphometric measures from local image artifacts such as partial volume effects. Third, the modeling approach will not contract diffusion measurements to tensor values. Thus, hard-to-resolve features such as fiber intersections and projections will be preserved. Finally, we will validate the tools at many levels, including histology, macaque imaging, biological variation in normal volunteers, and clinical feasibility studies in brain tumors, HIV-related neuropathology, and multiple sclerosis. The successful development, validation, and application of these sophisticated software tools may spur further development of medical imaging data modeling. The precise measures of brain structures produced should have a significant impact on biomedical research, will provide a deeper understanding of the brain and how it changes, and could play an important role in surgical planning. More broadly, the tools should apply to research studies of any biological process that involves changes in WM.
描述(由申请人提供):在这个多学科项目中,研究人员团队将设计和应用软件工具,可以同时分割神经组织并识别大脑中神经纤维束的位置。这些工具将在神经系统的组合结构和扩散磁共振(MR)数据集上运行,并将产生每个白质(WM)结构的形态测量,包括其轨迹;横截面,可能沿轨迹变化;和纤维密度。
所提出的软件工具将对成像数据集进行全局建模。数值算法将调整神经组织和 WM 结构模型的参数,直到该模型与所有采集的成像数据一致并保持解剖学约束,例如神经纤维的不可压缩性和连续性。这些工具将在几个方面与当前的形态测量工具有所不同:它们将更加自动化;他们将整合并使用不同 MR 模式中可用的所有补充信息;而且它们不会出现大多数当前纤维束成像方法所固有的不准确性。
该研究项目在多个方面具有创新性。首先,WM 测量将在没有图像级配准的情况下在受试者之间进行比较,因为可以直接比较基于 WM 结构的参数。其次,研究人员将使用逆解方法对多值体积图像进行建模,全局解决局部图像伪影(例如部分体积效应)在形态测量中的模糊性。第三,建模方法不会将扩散测量收缩为张量值。因此,难以解析的特征(例如纤维交叉点和投影)将被保留。最后,我们将在多个层面上验证这些工具,包括组织学、猕猴成像、正常志愿者的生物变异,以及脑肿瘤、艾滋病毒相关神经病理学和多发性硬化症的临床可行性研究。这些复杂软件工具的成功开发、验证和应用可能会刺激医学成像数据建模的进一步发展。对大脑结构的精确测量将对生物医学研究产生重大影响,将提供对大脑及其变化方式的更深入了解,并可能在手术计划中发挥重要作用。更广泛地说,这些工具应适用于涉及 WM 变化的任何生物过程的研究。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Different Strokes for Different Folks: Visual Presentation Design between Disciplines.
不同的人有不同的笔触:学科之间的视觉呈现设计。
- DOI:10.1109/tvcg.2012.214
- 发表时间:2012
- 期刊:
- 影响因子:5.2
- 作者:Gomez,SR;Jianu,R;Ziemkiewicz,C;Guo,Hua;Laidlaw,DH
- 通讯作者:Laidlaw,DH
Brain network reorganisation and spatial lesion distribution in systemic lupus erythematosus.
- DOI:10.1177/0961203320979045
- 发表时间:2021-03
- 期刊:
- 影响因子:2.6
- 作者:Valdés Hernández MDC;Smith K;Bastin ME;Nicole Amft E;Ralston SH;Wardlaw JM;Wiseman SJ
- 通讯作者:Wiseman SJ
Fatigue and cognitive function in systemic lupus erythematosus: associations with white matter microstructural damage. A diffusion tensor MRI study and meta-analysis.
系统性红斑狼疮的疲劳和认知功能:与白质微结构损伤的关联。
- DOI:10.1177/0961203316668417
- 发表时间:2017
- 期刊:
- 影响因子:2.6
- 作者:Wiseman,SJ;Bastin,ME;Hamilton,IF;Hunt,D;Ritchie,SJ;Amft,EN;Thomson,S;Belch,JFF;Ralston,SH;Wardlaw,JM
- 通讯作者:Wardlaw,JM
Imaging signatures of meningioma and low-grade glioma: a diffusion tensor, magnetization transfer and quantitative longitudinal relaxation time MRI study.
- DOI:10.1016/j.mri.2015.12.006
- 发表时间:2016-05
- 期刊:
- 影响因子:2.5
- 作者:Piper RJ;Mikhael S;Wardlaw JM;Laidlaw DH;Whittle IR;Bastin ME
- 通讯作者:Bastin ME
Permutation and parametric tests for effect sizes in voxel-based morphometry of gray matter volume in brain structural MRI.
- DOI:10.1016/j.mri.2015.07.014
- 发表时间:2015-12
- 期刊:
- 影响因子:2.5
- 作者:Dickie DA;Mikhael S;Job DE;Wardlaw JM;Laidlaw DH;Bastin ME
- 通讯作者:Bastin ME
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID H LAIDLAW其他文献
DAVID H LAIDLAW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID H LAIDLAW', 18)}}的其他基金
MRI+DTI-Based Tools for Analyzing White Matter Variation
基于 MRI DTI 的白质变化分析工具
- 批准号:
7125056 - 财政年份:2005
- 资助金额:
$ 52.97万 - 项目类别:
MRI+DTI-Based Tools for Analyzing White Matter Variation
基于 MRI DTI 的白质变化分析工具
- 批准号:
7266301 - 财政年份:2005
- 资助金额:
$ 52.97万 - 项目类别:
MRI+DTI-Based Tools for Analyzing White Matter Variation
基于 MRI DTI 的白质变化分析工具
- 批准号:
6915946 - 财政年份:2005
- 资助金额:
$ 52.97万 - 项目类别:
相似国自然基金
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 52.97万 - 项目类别:
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
- 批准号:
10802793 - 财政年份:2023
- 资助金额:
$ 52.97万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 52.97万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 52.97万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 52.97万 - 项目类别: