Cell cycle in development and regeneration of the inner ear
内耳发育和再生中的细胞周期
基本信息
- 批准号:7325690
- 负责人:
- 金额:$ 50.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2011-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAgeBirdsCell CountCell CycleCell Cycle RegulationCell DeathCell Differentiation processCell ProliferationCell divisionCellsCochleaCochlear ductComplexCorwinCyclin-Dependent Kinase InhibitorDataDefectDevelopmentDifferentiation and GrowthDisruptionDown-RegulationEmbryonic DevelopmentF-Box ProteinsFailureFamilyFigs - dietaryGenesGeneticGenetic TranscriptionGoalsGrantHair CellsIn VitroInvestigationLabyrinthMaintenanceMammalsMethodsMolecularMorphogenesisMusMutant Strains MiceNatural regenerationNormal CellNotch Signaling PathwayNumbersOrganOrgan of CortiPathway interactionsPatternPerinatalPlayPoint MutationPost-Transcriptional RegulationProcessProliferatingProteinsProteolysisPublishingRegulationRelative (related person)ReportingResearch PersonnelRoleRuthenium BenSKP Cullin F-Box Protein LigasesSensory HairSeriesSignal TransductionSupporting CellTechniquesTertiary Protein StructureTherapeutic InterventionTimeTranscriptional RegulationUbiquitinVertebratesWild Type Mouseage relatedbasedaydeafnesshair cell regenerationin vivoinhibitor/antagonistinsightloss of function mutationmutantnotch proteinpostnatalprogenitorprogramsprotein degradationresponsetool
项目摘要
Loss of sensory hair cells in mammals results in permanent deafness because regeneration does not
occur. The loss of regenerative ability is tied to the inability of the specialized supporting cells within the
organ of Corti to begin dividing in response to hair cell death. We have taken a developmental approach to
this problem. Our hope is that by thoroughly understanding the process by which the cells of the organ of
Corti stop dividing during embryogenesis, we will gain insight into why regeneration does not occur. In doing
so, we hope to provide tools and targets for therapeutic intervention into the problem of deafness.
During development of the organ of Corti, control of cell proliferation is tightly coordinated with the
process of cell differentiation and patterning (Ruben, 1968). We have shown that the cyclin-dependent
kinase inhibitor p27Klp1 is required for timing this coordination. In p27Klp1 mutant mice, cell cycle exit is
delayed, leading to supernumerary cells, a disruption of the orderly pattern of hair cell organization, and
deafness (Chen and Segil, 1999).
Although p27Klp1 abundance is widely believed to be regulated at the post-transcriptional level
through control of protein turnover, our results indicate that transcriptional regulation of p27Klp1 is largely,
though not entirely, responsible for the determining the number of cells in the mature organ. Additional
preliminary data indicates that Notch pathway signaling may be a key player in regulating p27 transcription
during organ of Corti formation. In Specific Aim 1 we analyze the role of Notch signaling in the spatial and
temporal regulation of p27Klp1 transcription during embryogenesis of the organ of Corti.
In spite of the importance of p27Klp1 transcriptional regulation, we have observed that in Skp2 mutant
mice, there is also a defect in cell cycle exit and organ of Corti structure. Skp2 is part of the SCF-ubiquitin
ligase complex that is involved in regulating p27Klp1 protein turnover. In Specific Aim 2 we address the role of
post-transcriptional mechanisms in the regulation of p27Klp1.
Finally, in Specific Aims 3 and 4 we address the problem of regeneration directly, by studying p27Klp1
regulation in postnatal supporting cells. We have recently developed techniques that allow us to purify
postnatal supporting cells and grow them in vitro. In doing so, we have discovered that perinatal supporting
cells retain the capacity to reenterthe cell cycle and divide, while supporting cells from P14 mice are unable
to do so. Changes in the ability of P14 supporting cells to down-regulate p27Kip1 are partly responsible for
the block to cell division that results in the lack of regeneration. This specific aim investigates the molecular
basis for the age-dependent change in p27 regulation that we hypothesize underlies the lack of regeneration
in the mammalian innerear.
哺乳动物失去感觉毛细胞会导致永久性耳聋,因为再生不会
发生。再生能力的丧失与体内专门支持细胞的无能力有关。
柯蒂氏器响应毛细胞死亡而开始分裂。我们采取了发展的方针
这个问题。我们希望通过彻底了解器官细胞的过程
科尔蒂在胚胎发生过程中停止分裂,我们将深入了解为什么不发生再生。在做
因此,我们希望为耳聋问题的治疗干预提供工具和目标。
在柯蒂氏器的发育过程中,细胞增殖的控制与
细胞分化和模式形成的过程(Ruben,1968)。我们已经证明,细胞周期蛋白依赖性
需要激酶抑制剂 p27Klp1 来计时这种协调。在 p27Klp1 突变小鼠中,细胞周期退出是
延迟,导致多余的细胞,毛细胞组织有序模式的破坏,以及
耳聋(Chen 和 Segil,1999)。
尽管人们普遍认为 p27Klp1 丰度在转录后水平受到调节
通过控制蛋白质周转,我们的结果表明 p27Klp1 的转录调控很大程度上是,
尽管不完全,但负责确定成熟器官中的细胞数量。额外的
初步数据表明Notch通路信号可能是调节p27转录的关键因素
柯蒂氏器形成期间。在具体目标 1 中,我们分析了 Notch 信号在空间和
柯蒂氏器胚胎发生过程中 p27Klp1 转录的时间调控。
尽管 p27Klp1 转录调控很重要,但我们观察到在 Skp2 突变体中
小鼠的细胞周期退出和柯蒂结构器官也存在缺陷。 Skp2 是 SCF 泛素的一部分
连接酶复合物参与调节 p27Klp1 蛋白周转。在具体目标 2 中,我们阐述了以下角色:
p27Klp1 调节的转录后机制。
最后,在具体目标 3 和 4 中,我们通过研究 p27Klp1 直接解决再生问题
产后支持细胞的调节。我们最近开发了一些技术,可以净化
产后支持细胞并在体外培养它们。在此过程中,我们发现围产期支持
细胞保留重新进入细胞周期和分裂的能力,而 P14 小鼠的支持细胞则无法
这样做。 P14 支持细胞下调 p27Kip1 能力的变化是造成这种情况的部分原因
细胞分裂受阻,导致再生不足。这一特定目标研究了分子
p27 调节随年龄变化的基础,我们推测这是再生缺乏的基础
在哺乳动物的内耳中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Segil其他文献
Neil Segil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Segil', 18)}}的其他基金
Training in Hearing and Communication Neuroscience
听力和交流神经科学培训
- 批准号:
10438536 - 财政年份:2009
- 资助金额:
$ 50.78万 - 项目类别:
Cell cycle in development and regeneration of the inner ear
内耳发育和再生中的细胞周期
- 批准号:
7901243 - 财政年份:2009
- 资助金额:
$ 50.78万 - 项目类别:
The cell cycle in ototoxin induced hair cell death.
耳毒素中的细胞周期诱导毛细胞死亡。
- 批准号:
7252025 - 财政年份:2005
- 资助金额:
$ 50.78万 - 项目类别:
The cell cycle in ototoxin induced hair cell death.
耳毒素中的细胞周期诱导毛细胞死亡。
- 批准号:
6983782 - 财政年份:2005
- 资助金额:
$ 50.78万 - 项目类别:
The cell cycle in ototoxin induced hair cell death.
耳毒素中的细胞周期诱导毛细胞死亡。
- 批准号:
7086138 - 财政年份:2005
- 资助金额:
$ 50.78万 - 项目类别:
Marking hair cell progenitors with BAC transgenics
用 BAC 转基因标记毛细胞祖细胞
- 批准号:
6649546 - 财政年份:2003
- 资助金额:
$ 50.78万 - 项目类别:
Marking hair cell progenitors with BAC transgenics
用 BAC 转基因标记毛细胞祖细胞
- 批准号:
6731044 - 财政年份:2003
- 资助金额:
$ 50.78万 - 项目类别:
Cell cycle in development and regeneration of the inner ear
内耳发育和再生中的细胞周期
- 批准号:
7211123 - 财政年份:1999
- 资助金额:
$ 50.78万 - 项目类别:
Cell cycle in development and regeneration of the inner ear
内耳发育和再生中的细胞周期
- 批准号:
7391369 - 财政年份:1999
- 资助金额:
$ 50.78万 - 项目类别:
CELL CYCLE IN DEVELOPMENT / REGENERATION OF THE INNER EA
内脑区发育/再生中的细胞周期
- 批准号:
6618083 - 财政年份:1999
- 资助金额:
$ 50.78万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 50.78万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 50.78万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 50.78万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 50.78万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 50.78万 - 项目类别: