Strategic Feedback Control of Pharmaceutical Crystallization Processes

药物结晶过程的策略反馈控制

基本信息

  • 批准号:
    EP/E022294/1
  • 负责人:
  • 金额:
    $ 27.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

A significant proportion of materials are produced in crystalline form. Many of these crystals are obtained by nucleation and growth from solution. This type of crystal production is often referred to as industrial crystallization. Crystallization is a key separation and purification unit in most of the pharmaceutical, food and fine chemical processes, with a significant impact on the efficiency and profitability of the overall process. Over 90% of all pharmaceutical products contain active ingredients produced in crystalline form and typical raw material cost for a single batch of active pharmaceutical ingredient is $1 to $2 million. Failure to meet product specifications incurs significant costs. For efficient downstream operation (such as filtration and drying) and product effectiveness (e.g. bioavailability, tablet stability) the control of crystal purity, size distribution and shape can be critically important. The crystal size and shape affect the dissolution rate, which is an important property of crystals for medicinal use. In the pharmaceutical industry, the relative impact of drug benefit versus adverse side effects can depend on the dissolution rate. Control of crystal size and shape enables the optimization of the dissolution rate to maximize the benefit while minimizing the side effects. Poor control of crystal size and shape can also result in unacceptably long filtration or drying times, or in extra processing steps, such as recrystallization or milling, and can influence the purity of the product which is especially important in the food and pharmaceutical industries, in which the crystals are consumed. Improved control of crystallization processes offer possibilities for better product quality and improved process efficiency, for example by reducing time to market (and extending the length of time before patent expiration), and the reduction of compromised batches, therefore providing significant increase in quality of life, for example by making new drugs available more quickly and at lower cost. However, controlling crystallization is challenging due its high nonlinearity and its high sensitivity to process conditions. The aim of the research is to develop a systematic and comprehensive framework for controlling pharmaceutical crystal formation that incorporates first-principles simulation models, efficient dynamic optimization and model based control algorithms, as well as novel mathematical analysis techniques. The approach will allow to control the shape of the crystal and the overall form of the size distribution by repeatedly solving a constrained nonlinear optimization problem in real-time that will adjust the operating conditions to achieve the desired targets, and guarantees that the process operates within feasible conditions. Uncertainties in the operating conditions will be incorporated in the controller design to reduce variability of the product quality from its desired value. Measurements provided by in situ process analytical technology will be used in real-time by the feedback control strategy to estimate and predict the product quality for different operating conditions. This technique will be useful in treating several industrially important key problems in crystallization, such as controlling the formation of desired polymorphs and/or achieving consistent product quality despite of uncertainties due to scale-up. The end result of the project will be a novel methodology for crystallization control, which will provide a comprehensive framework (including model, algorithm, software and equipment) for the robust design of desired polymorph, crystal shape as well as the form of the crystal size distribution for specific applications (e.g. drug delivery and dosage, or proteomics), opening the way toward systematic crystal engineering in the future.
以结晶形式产生的材料很大一部分。这些晶体中的许多是通过溶液的成核和生长获得的。这种晶体生产通常称为工业结晶。结晶是大多数药物,食物和精细化学过程中的关键分离和纯化单元,对整个过程的效率和盈利能力产生了重大影响。超过90%的所有药品中包含以结晶形式生产的活性成分,一批活跃的药品成分的典型原材料成本为1至200万美元。不符合产品规格会带来巨大的成本。为了有效的下游操作(例如过滤和干燥)以及产品有效性(例如生物利用度,片剂稳定性),控制晶体纯度,尺寸分布和形状可能至关重要。晶体尺寸和形状会影响溶解速率,这是用于药用使用的晶体的重要特性。在制药行业中,药物益处与不良副作用的相对影响可能取决于溶解率。控制晶体尺寸和形状的控制可以优化溶解速率,以最大程度地提高益处,同时最大程度地减少副作用。对晶体尺寸和形状的控制不良也可能导致长期过滤或干燥时间,或者在额外的加工步骤(例如重结晶或铣削)中,并且可以影响产品的纯度,这在食品和制药行业中尤为重要,在食品和制药行业中,消耗了晶体。改善了结晶过程的控制提供了更好的产品质量和提高过程效率的可能性,例如,减少上市时间(并延长了专利到期前的时间长度),并减少批次的降低,因此可以使生活质量的显着提高,例如,通过使新药更快,更快地可提供新的药物。但是,由于其高非线性和对过程条件的高灵敏度,控制结晶具有挑战性。该研究的目的是开发一个系统的全面框架来控制药物晶体形成,该框架结合了第一原理模拟模型,有效的动态优化和基于模型的控制算法以及新颖的数学分析技术。该方法将通过反复在实时解决受约束的非线性优化问题来控制晶体的形状和尺寸分布的整体形式,以调整操作条件以实现所需的目标,并确保该过程在可行条件下运行。在操作条件下的不确定性将纳入控制器设计中,以从其所需值中降低产品质量的可变性。原位过程分析技术提供的测量将通过反馈控制策略实时使用,以估算和预测不同操作条件的产品质量。该技术将有助于处理结晶中的几个重要重要的关键问题,例如控制所需的多晶型物和/或达到一致的产品质量,尽管由于扩展而导致不确定性。该项目的最终结果将是一种用于结晶控制的新方法,该方法将提供一个全面的框架(包括模型,算法,软件和设备),用于强大的所需多晶型,晶体形状以及特定应用的晶体尺寸分布的形式(例如,药物输送和剂量或蛋白质组学),打开朝着系统的晶体晶体机器,未来。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoltan Nagy其他文献

Myeloablation Triggers Bone Marrow Niche Remodeling Resulting in Transient Collagenopathy and Impaired Platelet Function
  • DOI:
    10.1182/blood-2024-207360
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Kristina Mott;Margret Droste;Maria Drayss;Lukas Johannes Weiss;Zoltan Nagy;Harald Schulze
  • 通讯作者:
    Harald Schulze
G6b-B Directs Megakaryocyte Transcriptional Program Controlling Differentiation and Bone Marrow Homeostasis
  • DOI:
    10.1182/blood-2024-201508
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Maximilian Englert;Gabriel H.M. Araujo;Harald Schulze;Bernhard Nieswandt;Zoltan Nagy
  • 通讯作者:
    Zoltan Nagy
Data on the interaction between thermal comfort and building control research
  • DOI:
    10.1016/j.dib.2018.01.033
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    June Young Park;Zoltan Nagy
  • 通讯作者:
    Zoltan Nagy
University of Birmingham Interplay between the tyrosine kinases Chk, Csk and phosphatase PTPRJ is critical for regulating platelets in mice
伯明翰大学酪氨酸激酶 Chk、Csk 和磷酸酶 PTPRJ 之间的相互作用对于调节小鼠血小板至关重要
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zoltan Nagy;J. Mori;Vanesa;A. Mazharian;Y. Senis
  • 通讯作者:
    Y. Senis
TGFβ1 Secretion in Megakaryocytes Is Autophagy-Dependent and Its Inhibition Ameliorates Myelofibrosis in Mice
  • DOI:
    10.1182/blood-2023-174409
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Isabelle C. Becker;Maria N. Barrachina;Virginia Camacho;Harvey G. Roweth;Julia Tilburg;Bernadette Chua;Zoltan Nagy;Maximilian Englert;Kellie R. Machlus;Robert Signer;Bernhard Nieswandt;Joseph E. Italiano
  • 通讯作者:
    Joseph E. Italiano

Zoltan Nagy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoltan Nagy', 18)}}的其他基金

Workshop on Atmospheric and Urban Digital Twins (AUDT); Austin, Texas
大气和城市数字孪生研讨会(AUDT);
  • 批准号:
    2324744
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
CMMI-EPSRC: Right First Time Manufacture of Pharmaceuticals (RiFTMaP)
CMMI-EPSRC:药品的首次成功制造 (RiFTMaP)
  • 批准号:
    2140452
  • 财政年份:
    2021
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
EFRI DCheM: Digital design of a network of distributed modular and agile manufacturing systems with optimal supply chain for personalized medical treatments
EFRI DCheM:分布式模块化和敏捷制造系统网络的数字化设计,具有个性化医疗的最佳供应链
  • 批准号:
    2132142
  • 财政年份:
    2021
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant
I-Corps: Miniaturized, End-to-End Pharmaceutical Manufacturing Platform
I-Corps:小型化端到端药品制造平台
  • 批准号:
    1745798
  • 财政年份:
    2017
  • 资助金额:
    $ 27.53万
  • 项目类别:
    Standard Grant

相似国自然基金

智能无人集群系统在线反馈的安全决策控制一体化设计与分析
  • 批准号:
    62373283
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于输出反馈的有限时间主动一体化抗干扰控制理论及应用
  • 批准号:
    62303148
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于预解分析的钝体流动结构表征和反馈控制机理研究
  • 批准号:
    12302363
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向量子精密测量的量子-经典反馈控制机理研究
  • 批准号:
    62375162
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于子空间操作的复杂间歇过程反馈优化控制方法研究
  • 批准号:
    62373147
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Mentoring the next generation of trainees in patient-oriented, community engaged research in obesity and health equity
指导下一代学员进行以患者为中心、社区参与的肥胖和健康公平研究
  • 批准号:
    10662072
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
Time-restricted eating: Is it an efficacious tool for weight loss maintenance
限时饮食:是减肥维持的有效工具吗
  • 批准号:
    10591316
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
Shared Resources Management
共享资源管理
  • 批准号:
    10625760
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
Next Generation Sequencing Shared Resource
下一代测序共享资源
  • 批准号:
    10625767
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
A Hybrid Effectiveness-Implementation RCT of Virtual Interview Training for Autistic Transition-Age Youth
针对自闭症过渡年龄青少年的虚拟面试培训的混合有效性实施随机对照试验
  • 批准号:
    10643547
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了