Mechanical Signals in Vessel Development
船舶开发中的机械信号
基本信息
- 批准号:7382931
- 负责人:
- 金额:$ 8.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-01 至 2009-01-31
- 项目状态:已结题
- 来源:
- 关键词:A MouseAdultAffectAnimalsArchitectureArteriesBehaviorBiochemicalBiomedical EngineeringBlood PressureBlood VesselsBlood flowCardiacCardiovascular DiseasesCardiovascular PhysiologyCardiovascular systemCell Differentiation processCellular biologyCharacteristicsCollagenCommunicationDataDevelopmentDiseaseEducational process of instructingElastinEmbryoExtracellular MatrixExtracellular Matrix ProteinsGene ExpressionGrowthHumanHypertensionKnowledgeLaboratoriesLearningLifeLongevityLungMeasuresMechanical StressMechanicsMentorsModelingMusNumbersPatientsPhysiologyPlayPreventivePrincipal InvestigatorProcessRecruitment ActivityResearchResearch PersonnelResearch TrainingRoleSignal TransductionSmooth Muscle MyocytesStagingStimulusStressStructureSupravalvular aortic stenosisSystemTechniquesTestingTrainingTraining Programsbasedesignexperiencehemodynamicsmathematical modelmature animalmouse modelpredictive modelingpressureprofessorprogramsradius bone structureskillstool
项目摘要
DESCRIPTION (provided by applicant):
This proposal outlines a four year program of training and research to establish the principal investigator as a biomedical engineering professor studying developmental cardiac mechanics. A postdoctoral year is necessary to learn techniques for measuring cardiovascular parameters in embryonic mice. Additional training will include teaching, communication and management skills. Dr. Robert Mecham is the mentor for the postdoctoral period. His laboratory focuses on extracellular matrix (ECM) in lung and vessel development and disease. The proposed research builds on the investigator's experience in biomedical engineering and will enhance her knowledge of cell biology, development, physiology and biochemical techniques.
During cardiovascular development, blood pressure and flow increase and smooth muscle cells produce ECM proteins, such as collagen and elastin, that define the mechanical behavior of the vessel wall. A mouse model of supravalvular aortic stenosis, an elastin-associated disease in humans, showed that elastin haploinsufficiency (ELN) results in altered vessel wall structure, decreased compliance and hypertension. Despite these features, ELN mice live a normal life span, suggesting that they adjust to reduced elastin amounts and the resulting changes in mechanical stimuli. The hypothesis of this proposal is that developing vessels remodel to optimize mechanical stresses in the wall and that these stresses provide a key signal for cellular differentiation. This remodeling will be described and predicted by a mathematical model in which perturbations to the system cause growth of various components, returning the stresses near homeostatic values. Because of the unique developmental remodeling in the ELN cardiovascular system, these mice provide an ideal tool to investigate the hypothesis and validate the mechanical model. The specific aims are: 1) To determine hemodynamic, mechanical and geometric parameters in developing vessels. 2) To determine how changes in elastin amount alter mechanical signals in developing vessels. 3) To develop a constrained mixture model to predict the growth of developing vessels.
Mechanical signals play a significant role in defining the structure and function of developing blood vessels. Understanding and predicting the growth and remodeling process is critical for determining possible treatments and preventive measures in developmental cardiovascular diseases.
描述(由申请人提供):
该提案概述了一项为期四年的培训和研究计划,以建立主要研究者,成为研究发展心脏力学的生物医学工程教授。博士后一年对于学习测量胚胎小鼠中心血管参数的技术是必要的。额外的培训将包括教学,沟通和管理技能。 Robert Mecham博士是博士后时期的导师。他的实验室专注于肺部和血管发育和疾病中的细胞外基质(ECM)。拟议的研究以研究者在生物医学工程方面的经验为基础,并将增强她对细胞生物学,开发,生理和生化技术的了解。
在心血管发育期间,血压和流动增加,平滑肌细胞会产生ECM蛋白,例如胶原蛋白和弹性蛋白,这些蛋白质定义了血管壁的机械行为。一种与人类弹性蛋白相关疾病的小鼠主动脉狭窄的小鼠模型表明,弹性蛋白单倍症(ELN)导致血管壁结构改变,依从性和高血压降低。尽管有这些特征,但ELN小鼠的寿命仍是正常的寿命,这表明它们适应弹性蛋白量减少和机械刺激的变化。该提议的假设是开发血管重塑以优化壁中的机械应力,并且这些应力为细胞分化提供了关键信号。这种重塑将通过数学模型描述和预测,在该模型中,对系统的扰动会导致各种组件的增长,从而返回稳态值附近的应力。由于ELN心血管系统中独特的发育重塑,这些小鼠提供了研究假设并验证机械模型的理想工具。具体目的是:1)确定发育中的血管中的血液动力学,机械和几何参数。 2)确定弹性蛋白量的变化如何改变发育中的血管中的机械信号。 3)开发约束混合模型以预测发育量的生长。
机械信号在定义发育血管的结构和功能中起着重要作用。了解和预测生长和重塑过程对于确定发育性心血管疾病的可能治疗方法和预防措施至关重要。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A constrained mixture model for developing mouse aorta.
- DOI:10.1007/s10237-010-0265-z
- 发表时间:2011-10
- 期刊:
- 影响因子:3.5
- 作者:Wagenseil, Jessica E.
- 通讯作者:Wagenseil, Jessica E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Wagenseil其他文献
Jessica Wagenseil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Wagenseil', 18)}}的其他基金
Investigating altered smooth muscle cell mechanotransduction as a cause of supravalvular aortic stenosis
研究平滑肌细胞机械传导改变导致瓣膜上主动脉瓣狭窄的原因
- 批准号:
10568580 - 财政年份:2022
- 资助金额:
$ 8.6万 - 项目类别:
Elastin deposition and stenosis formation in the developing aorta
发育中的主动脉中的弹性蛋白沉积和狭窄形成
- 批准号:
10266226 - 财政年份:2020
- 资助金额:
$ 8.6万 - 项目类别:
BIOMECHANICAL FACTORS IN CONGENITAL VASCULAR DISEASE
先天性血管疾病的生物力学因素
- 批准号:
8656808 - 财政年份:2013
- 资助金额:
$ 8.6万 - 项目类别:
BIOMECHANICAL FACTORS IN CONGENITAL VASCULAR DISEASE
先天性血管疾病的生物力学因素
- 批准号:
8833325 - 财政年份:2013
- 资助金额:
$ 8.6万 - 项目类别:
BIOMECHANICAL FACTORS IN CONGENITAL VASCULAR DISEASE
先天性血管疾病的生物力学因素
- 批准号:
8774744 - 财政年份:2013
- 资助金额:
$ 8.6万 - 项目类别:
Biomechanical Factors in Congenital Vascular Disease
先天性血管疾病的生物力学因素
- 批准号:
8335042 - 财政年份:2012
- 资助金额:
$ 8.6万 - 项目类别:
Biomechanical Factors in Congenital Vascular Disease
先天性血管疾病的生物力学因素
- 批准号:
8512783 - 财政年份:2012
- 资助金额:
$ 8.6万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of prostate organogenesis by tissue-resident macrophages
组织驻留巨噬细胞对前列腺器官发生的调节
- 批准号:
10555589 - 财政年份:2023
- 资助金额:
$ 8.6万 - 项目类别:
Generation of a new Cre-deleter mouse line to study spermiogenesis
生成新的 Cre-deleter 小鼠品系以研究精子发生
- 批准号:
10668012 - 财政年份:2023
- 资助金额:
$ 8.6万 - 项目类别:
Using Natural Mouse Movement to Establish a Developmental "Biomarker" for Corticospinal Damage
利用自然小鼠运动建立皮质脊髓损伤的发育“生物标志物”
- 批准号:
10667807 - 财政年份:2023
- 资助金额:
$ 8.6万 - 项目类别:
Targeting HNF4-induced thrombo-inflammation in Chagas disease
针对恰加斯病中 HNF4 诱导的血栓炎症
- 批准号:
10727268 - 财政年份:2023
- 资助金额:
$ 8.6万 - 项目类别:
Pre-mRNA Processing and Function of Alternatively Spliced Isoforms of TFPI
TFPI 选择性剪接亚型的前 mRNA 加工和功能
- 批准号:
10664506 - 财政年份:2023
- 资助金额:
$ 8.6万 - 项目类别: