Investigating altered smooth muscle cell mechanotransduction as a cause of supravalvular aortic stenosis
研究平滑肌细胞机械传导改变导致瓣膜上主动脉瓣狭窄的原因
基本信息
- 批准号:10568580
- 负责人:
- 金额:$ 39.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibodiesAortaAortic Valve StenosisBiologicalBlood PressureCalciumCalcium SignalingCardiovascular DiseasesCharacteristicsChemicalsChildCollagenDNA Sequence AlterationDataDepositionDevelopmentElasticityElastinExtracellular MatrixExtracellular Matrix ProteinsGenesGenetic TranscriptionHeart failureHumanIn VitroIon ChannelMeasuresMechanicsModulusMusMutationNuclear TranslocationOperative Surgical ProceduresPatientsPharmacologic SubstancePhenotypePhysiologicalPiezo 1 ion channelPiezo 2 ion channelPiezo ion channelsProliferatingPropertyProteinsRepeat SurgeryRiskRoleSeveritiesSignal PathwaySignal TransductionSmooth Muscle MyocytesStenosisStressStretchingSupravalvular aortic stenosisThoracic Aortic AneurysmTimeVascular Diseasescell dedifferentiationcell typegenetic associationgenetic manipulationhemodynamicsin vivoinduced pluripotent stem cellmechanotransductionmigrationmouse modelnovel therapeutic interventionoverexpressionpreventpublic health relevanceresponsesingle-cell RNA sequencingsudden cardiac death
项目摘要
ABSTRACT
Supravalvular aortic stenosis (SVAS) is characterized by focal narrowing of the aorta that increases the risk
for sudden cardiac death. SVAS is caused by mutations in the elastin gene that lead to decreased elastin
amounts and there are currently no pharmaceutical treatments. The mechanisms by which elastin insufficiency
cause SVAS are not well understood. Elastin is a critical mechanical component of the aorta and contributes to
the passive stiffness (or modulus) that determines how much the aorta will deform (or strain) under applied
hemodynamic stresses. Strain on smooth muscle cells (SMCs) within the aortic wall affects differentiation,
proliferation, and migration. Cellular transmembrane channels, including Piezo1/2, are mechanosensitive
molecules that transduce mechanical changes (such as strain) into biological effects (such as differentiation).
Activation of Piezo channels leads to increases in intracellular calcium that can stimulate nuclear translocation
of YAP/TAZ, which are transcriptional regulators of target genes including Ctgf. Ctgf is a known modulator of
SMC phenotype that encourages dedifferentiation, migration, and proliferation - all characteristics affected by
strain that may contribute to SVAS. Preliminary data in our unique SVAS mouse model (TaglnCre;Elnf/f) show
a reduced aortic modulus that may increase SMC strain, increased Piezo2 and Ctgf expression in aortic SMCs,
and a dedifferentiated aortic SMC phenotype. We hypothesize that SVAS is caused by altered SMC
mechanotransduction when enough elastin is not laid down to stiffen the aortic wall and prevent increased
SMC strain as stress increases with blood pressure during development. Increased SMC strain causes
overexpression/activation of Piezo2, leading to increased intracellular calcium, nuclear translocation of
YAP/TAZ, and increased Ctgf transcription that causes SMC phenotype modulation contributing to stenosis.
We will address our hypothesis through three complementary aims using TaglnCre;Elnf/f mice and human
SMCs derived from induced pluripotent stem cells from SVAS patients. In Aim 1, we will measure the global
and local elastic modulus of TaglnCre;Elnf/f aorta and SMC strain under physiologic loading conditions at
different developmental time points (before and after stenosis formation) and correlate these results with
changes in SMC phenotype as measured by single cell RNA-Seq. In Aim 2, we will apply strain to mouse aorta
and mouse and human SMCs and measure Piezo2 expression and activity. We will chemically and genetically
alter Piezo2 expression/activity and determine effects on in vitro calcium signaling and in vivo stenosis
severity. In Aim 3, we will chemically and genetically manipulate Piezo2 expression/activity, YAP/TAZ
localization, and Ctgf amounts in mouse aorta and mouse and human SMCs and determine the effects on
SMC phenotype and stenosis severity. Our results will be important for identifying new pharmaceutical
strategies that may prevent SMC phenotype changes in response to elastin insufficiency and treat SVAS.
.
抽象的
上主动脉狭窄(SVA)的特征是主动脉的局灶性变窄,增加了风险
突然心脏死亡。 SVA是由弹性蛋白基因突变引起的,导致弹性蛋白降低
数量,目前没有药物治疗。弹性蛋白不足的机制
因为SVA并不理解。弹性蛋白是主动脉的关键机械成分,有助于
被动刚度(或模量)确定主动脉在应用下将变形(或应变)的数量
血液动力学应力。在主动脉壁内部的平滑肌细胞(SMC)会影响分化,
扩散和迁移。细胞跨膜通道,包括压电1/2,是机械敏感的
将机械变化(例如应变)转化为生物学作用(例如分化)的分子。
压电通道的激活导致细胞内钙的增加,可以刺激核易位
YAP/TAZ,是包括CTGF在内的靶基因的转录调节剂。 CTGF是已知的调节器
鼓励去分化,迁移和扩散的SMC表型 - 所有特征受
可能导致SVA的压力。在我们独特的SVAS鼠标模型(Taglncre; elnf/f)中显示的初步数据显示
主动脉模量降低,可能会增加SMC菌株,在主动脉SMC中增加压电2和CTGF表达,
以及去分化的主动脉SMC表型。我们假设SVA是由SMC改变引起的
机械转导足够的弹性蛋白未放置以使主动脉壁加强并防止增加
SMC应变随着发育过程中的压力随血压的增加而增加。增加SMC应变原因
压电2的过表达/激活,导致细胞内钙增加,核易位
YAP/TAZ,并增加CTGF转录,导致SMC表型调节导致狭窄。
我们将通过使用taglncre; elnf/f小鼠和人来解决我们的假设
来自SVAS患者的诱导多能干细胞的SMC。在AIM 1中,我们将衡量全球
在生理载荷条件下,taglncre的局部弹性模量; ELNF/F主动脉和SMC菌株
不同的发育时间点(狭窄形成之前和之后),并将这些结果与
通过单细胞RNA-seq测量的SMC表型的变化。在AIM 2中,我们将应对小鼠主动脉施加应变
小鼠和人类SMC,并测量压电2的表达和活性。我们将通过化学和遗传
改变压电2的表达/活性,并确定对体外钙信号传导和体内狭窄的影响
严重程度。在AIM 3中,我们将通过化学和遗传操纵压电2的表达/活性,YAP/TAZ
本地化,CTGF在小鼠主动脉和小鼠和人类SMC中的含量,并确定对
SMC表型和狭窄的严重程度。我们的结果对于识别新药物非常重要
可能会阻止SMC表型因弹性蛋白不足和治疗SVA而发生变化的策略。
。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Wagenseil其他文献
Jessica Wagenseil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Wagenseil', 18)}}的其他基金
Elastin deposition and stenosis formation in the developing aorta
发育中的主动脉中的弹性蛋白沉积和狭窄形成
- 批准号:
10266226 - 财政年份:2020
- 资助金额:
$ 39.17万 - 项目类别:
BIOMECHANICAL FACTORS IN CONGENITAL VASCULAR DISEASE
先天性血管疾病的生物力学因素
- 批准号:
8656808 - 财政年份:2013
- 资助金额:
$ 39.17万 - 项目类别:
BIOMECHANICAL FACTORS IN CONGENITAL VASCULAR DISEASE
先天性血管疾病的生物力学因素
- 批准号:
8833325 - 财政年份:2013
- 资助金额:
$ 39.17万 - 项目类别:
BIOMECHANICAL FACTORS IN CONGENITAL VASCULAR DISEASE
先天性血管疾病的生物力学因素
- 批准号:
8774744 - 财政年份:2013
- 资助金额:
$ 39.17万 - 项目类别:
Biomechanical Factors in Congenital Vascular Disease
先天性血管疾病的生物力学因素
- 批准号:
8335042 - 财政年份:2012
- 资助金额:
$ 39.17万 - 项目类别:
Biomechanical Factors in Congenital Vascular Disease
先天性血管疾病的生物力学因素
- 批准号:
8512783 - 财政年份:2012
- 资助金额:
$ 39.17万 - 项目类别:
相似国自然基金
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于吡啶盐的可裂解抗体-药物偶联方法研究
- 批准号:22307081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TFAM条件性敲除重塑树突状细胞免疫代谢增强PD-1抗体抗肿瘤作用的机制研究
- 批准号:82303723
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
广谱中和埃博拉病毒的纳米抗体研发以及中和机制研究
- 批准号:82302522
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新细胞因子FAM19A4联合CTLA-4抗体在肿瘤治疗的功能和机制研究
- 批准号:32370967
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Time Restricted Feeding in Diet Induced Obesity Improves Aortic Damage and Endothelial Function Through Reducing Th17 Cells
饮食中的限时喂养通过减少 Th17 细胞改善主动脉损伤和内皮功能
- 批准号:
10606103 - 财政年份:2023
- 资助金额:
$ 39.17万 - 项目类别:
Dual Role of HSP70 in Diabetes-Induced Vascular Dysfunction
HSP70 在糖尿病引起的血管功能障碍中的双重作用
- 批准号:
10515009 - 财政年份:2022
- 资助金额:
$ 39.17万 - 项目类别:
Systems Pharmacology Model of Cardiac Hypertrophy
心脏肥大的系统药理学模型
- 批准号:
10598591 - 财政年份:2022
- 资助金额:
$ 39.17万 - 项目类别:
2-HOBA Phase 2 Clinical Trial in Rheumatoid Arthritis
2-HOBA 类风湿关节炎 2 期临床试验
- 批准号:
10610318 - 财政年份:2022
- 资助金额:
$ 39.17万 - 项目类别: