Cell shape cell adhesion and regulation of ovarian folliculogenesis

细胞形状细胞粘附和卵巢卵泡发生的调节

基本信息

  • 批准号:
    BB/F000014/1
  • 负责人:
  • 金额:
    $ 45.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Female mammals are born with all the eggs they will ever have, and this stock is irreplaceable. The majority of these eggs in the ovary are held in a resting stock of small immature eggs. Each egg is surrounded by a layer of a few flattened cells, called granulosa cells, and forms a structure known as a follicle. During reproductive life a steady trickle of follicles leave the resting stage and start to grow. This continues until the stock of eggs is exhausted and, in the human female, this results in the menopause, normally at the age of about 50 years. The progression of follicles from the resting to the growing phase has to be tightly regulated to ensure a normal reproductive lifespan. Premature depletion of oocytes, leading to an early menopause, is a common cause of infertility in women. Little is known about the factors that control the start of follicle growth. Growth factors produced locally in the ovary seem to have an important role but there are several possible candidates and it is not clear which ones are the key factors, and why some follicles start growing while others which are close by don't. In this project, using the mouse ovary as a model, we focus on the change that occurs in the shape of the granulosa cells, which is the first indication of follicle growth. This will give us a new insight into the way in which granulosa cells communicate with each other and with the oocyte. Using microscopy, one of the most dramatic changes that we see as the follicles start to grow is that the flattened granulosa cells become fatter, and more cuboidal in shape. After the granulosa cells have changed shape, they begin to divide, leading to an increase in number and at this point the oocyte begins to grow. Studies in skin cells have shown that this critical change in cell shape must involve an increase in the proteins that stick the cells together (so called adhesion molecules) along with changes in the internal protein 'scaffold', or cytoskeleton, of the cell. Adhesion molecules are remarkable in that, as well as sticking cells together, they also link tightly to the cytoskeleton and, in addition, send molecular signals to the nucleus. If the cell changes shape, the adhesion molecules can send signals to produce new proteins and other molecules needed for cell division. Surprisingly little is known about adhesion molecules and the cytoskeleton in follicles. We therefore want to map which adhesion molecules and cytoskeleton proteins are present in resting follicles and look to see if some of the signalling molecules can be seen near the nucleus. We will investigate how these molecules change as the follicle starts to grow. If we culture ovaries in dishes whilst blocking adhesion, we can see how important the adhesion molecules are in the change in granulosa cell shape, cell division and oocyte growth by blocking their ability to stick the cells together. Overall, by defining the proteins involved in the change in cell shape and showing where they are localized during the various stages of follicle growth, we will be better able to identify the most important input signals from the environment that lead to the change in shape of granulosa cells. We can also then examine the resultant output signals from the changing granulosa cells to the egg which stimulate its growth. In other words, we aim to identify the key factors that determine the reproductive lifespan of the mammal.
雌性哺乳动物生来就拥有所有的卵子,而且这种卵子是不可替代的。卵巢中的大部分卵子都保存在未成熟的小卵子中。每个卵子都被一层称为颗粒细胞的扁平细胞包围,并形成称为卵泡的结构。在生殖过程中,不断有卵泡离开静止阶段并开始生长。这种情况一直持续到卵子库存耗尽为止,对于人类女性来说,这会导致更年期,通常在 50 岁左右。必须严格调节卵泡从静止期到生长期的进展,以确保正常的生殖寿命。卵母细胞过早耗尽导致更年期提前,是女性不孕的常见原因。对于控制卵泡生长开始的因素知之甚少。卵巢局部产生的生长因子似乎发挥着重要作用,但有几种可能的候选因子,目前尚不清楚哪些是关键因子,也不清楚为什么一些卵泡开始生长,而其他邻近的卵泡则不生长。在这个项目中,我们使用小鼠卵巢作为模型,重点关注颗粒细胞形状的变化,这是卵泡生长的第一个迹象。这将使我们对颗粒细胞之间以及与卵母细胞之间的通讯方式有一个新的认识。使用显微镜观察,当卵泡开始生长时,我们看到的最显着的变化之一是扁平的颗粒细胞变得更胖,形状更呈立方体。颗粒细胞改变形状后,它们开始分裂,导致数量增加,此时卵母细胞开始生长。对皮肤细胞的研究表明,细胞形状的这种关键变化必定涉及将细胞粘在一起的蛋白质(所谓的粘附分子)的增加,以及细胞内部蛋白质“支架”或细胞骨架的变化。粘附分子的非凡之处在于,它们除了将细胞粘在一起外,还与细胞骨架紧密相连,此外还向细胞核发送分子信号。如果细胞改变形状,粘附分子可以发送信号以产生细胞分裂所需的新蛋白质和其他分子。令人惊讶的是,人们对毛囊中的粘附分子和细胞骨架知之甚少。因此,我们想要绘制静息卵泡中存在哪些粘附分子和细胞骨架蛋白的图谱,并观察是否可以在细胞核附近看到一些信号分子。我们将研究当卵泡开始生长时这些分子如何变化。如果我们在培养皿中培养卵巢,同时阻断粘附,我们可以通过阻断粘附分子将细胞粘附在一起的能力来了解粘附分子在颗粒细胞形状、细胞分裂和卵母细胞生长的变化中的重要性。总体而言,通过定义参与细胞形状变化的蛋白质并显示它们在卵泡生长的各个阶段的定位位置,我们将能够更好地识别来自环境的导致细胞形状变化的最重要的输入信号。颗粒细胞。然后,我们还可以检查从变化的颗粒细胞到鸡蛋的输出信号,刺激其生长。换句话说,我们的目标是确定决定哺乳动物生殖寿命的关键因素。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Onset and Heterogeneity of Responsiveness to FSH in Mouse Preantral Follicles in Culture.
  • DOI:
    10.1210/en.2016-1435
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Hardy K;Fenwick M;Mora J;Laird M;Thomson K;Franks S
  • 通讯作者:
    Franks S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Hardy其他文献

Macho, mobile and resilient? How workers with impairments are doubly disabled in project-based film and television work
男子气概、行动力强、适应力强?
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Randle;Kate Hardy
  • 通讯作者:
    Kate Hardy
on where to begin: Sheila Rowbotham’s Women, Resistance and Revolution and anti-capitalist feminism today
从哪里开始:希拉·罗博瑟姆(Sheila Rowbotham)的《妇女、抵抗与革命以及当今的反资本主义女权主义》
  • DOI:
    10.1057/s41305-017-0083-6
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kate Hardy
  • 通讯作者:
    Kate Hardy
The social protection of workers in the platform economy
平台经济劳动者的社会保障
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chris Forde;Mark Stuart;Simon Joyce;Liz Oliver;D. Valizade;Gabriella Alberti;Kate Hardy;Vera Trappmann;Charles Umney;Calum Carson
  • 通讯作者:
    Calum Carson
Apoptosis in the human embryo.
  • DOI:
    10.1530/ror.0.0040125
  • 发表时间:
    1999-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kate Hardy
  • 通讯作者:
    Kate Hardy
Infrastructures of Social Reproduction
社会再生产的基础设施

Kate Hardy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Hardy', 18)}}的其他基金

The impact of COVID-19 on the provision of Early Years childcare in England and Wales
COVID-19 对英格兰和威尔士幼儿保育服务的影响
  • 批准号:
    ES/V013203/1
  • 财政年份:
    2020
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Research Grant
The role of BMP antagonists in ovarian follicle development
BMP拮抗剂在卵泡发育中的作用
  • 批准号:
    BB/H00002X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 45.37万
  • 项目类别:
    Research Grant

相似国自然基金

基于形状记忆微球的动态曲面用于干细胞行为调控的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光响应形状记忆神经导管负载间充质干细胞修复周围神经缺损的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
杆状蓝细菌趋光运动中细胞形状动态变化的机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
运用聚合物微图案探讨细胞形状调控细胞表型转化
  • 批准号:
    22175041
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
生物纳米管在肿瘤间质中渗透能力的刚性和形状效应的研究
  • 批准号:
    11902092
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
  • 批准号:
    10750690
  • 财政年份:
    2024
  • 资助金额:
    $ 45.37万
  • 项目类别:
Modulation of the biliary immune niche by the microbiome
微生物组对胆道免疫生态位的调节
  • 批准号:
    10349405
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
Understanding and rewiring cellular behavior with synthetic biology approaches
用合成生物学方法理解和重新连接细胞行为
  • 批准号:
    10662938
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
Modulators of cardiomyocyte structure to promote functional recovery during cardiac regeneration and repair
心肌细胞结构调节剂促进心脏再生和修复过程中的功能恢复
  • 批准号:
    10751640
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
Evolutionary adaptation of dense microbial populations to range expansion
密集微生物种群对范围扩张的进化适应
  • 批准号:
    10751361
  • 财政年份:
    2023
  • 资助金额:
    $ 45.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了