Manipulating Neural Tissue With Ultra-Short Laser Pulses
用超短激光脉冲操纵神经组织
基本信息
- 批准号:7121122
- 负责人:
- 金额:$ 70.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-08 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The advent of ultrashort laser light pulses as a laboratory tool provides an opportunity to probe and manipulate anatomy and function in nervous systems. Ultrashort pulses are the essential means to drive the nonlinear absorption of light by biomolecules, which leads to a localized region of excitation and forms the basis of two-photon scanning microscopy. More recently, nonlinear absorption has been exploited as a means to reliably and reproducibly create micrometer-sized ablations in brain tissue with minimal collateral damage. These ablations
drive all-optical histology, which allows anatomy to be imaged with micrometer resolution and mapped throughout an entire brain. They can also be used to perturb neocortical blood flow as a means to probe normal and diseased vascular function. Yet much additional effort is required to advance this new technology as a means to enable studies of neuronal and vascular architectonics. Our technical program is focused on advancing the mixture of ablation and imaging. ? Optimization of pulsed lasers for nonlinear ablation. ? Optimization of objectives for high efficiency, in vivo ablation and imaging. ? Design and optimization of algorithms to reconstruct and analyze vascular and large-scale cellular anatomy. Our scientific effort involves the study of structural and functional anatomy in the brain. ? Automatic mapping of the relation among neuronal and nonneuronal nuclei, vasculature, and mitochondria or
other subcellular structures within the rodent brain. This includes stroke-induced changes in angioarchitecture. ? Optical induction of localized, thrombotic and hemorrhagic strokes as a means to study the redistribution of blood flow and blood 02 in response to perturbations in brain homeostasis. The program will be carried by a partnership of three research groups with a history of collaboration: Kleinfeld with expertise in nonlinear imaging and cellular/systems neuroscience; Squier with expertise in laser and microscope design and biological imaging; and Ifarraguerri with expertise in algorithm design and biomedical imaging. The proposed advancement in nonlinear optical methods will yield novel tools for manipulating and probing
tissues. We will make these tools reliable and readily available to the biomedical community. The proposed model systems may lead to improvements in preclinical models to assay therapeutics for stroke.
超短激光脉冲作为实验室工具的出现为探测和操纵神经系统的解剖结构和功能提供了机会。超短脉冲是驱动生物分子对光的非线性吸收的基本手段,从而产生局部激发区域,并构成双光子扫描显微镜的基础。最近,非线性吸收已被用作一种可靠且可重复地在脑组织中产生微米级消融的方法,并且附带损伤最小。这些消融
驱动全光学组织学,使解剖结构能够以微米分辨率成像并映射到整个大脑。它们还可用于扰乱新皮质血流,作为探测正常和患病血管功能的手段。然而,需要付出更多的努力来推进这项新技术,使其成为神经元和血管结构研究的一种手段。我们的技术计划专注于推进消融和成像的结合。 ?用于非线性烧蚀的脉冲激光器的优化。 ?优化物镜以实现高效体内消融和成像。 ?设计和优化算法以重建和分析血管和大规模细胞解剖结构。我们的科学工作涉及大脑结构和功能解剖学的研究。 ?自动绘制神经元和非神经元核、脉管系统和线粒体之间的关系或
啮齿动物大脑内的其他亚细胞结构。这包括中风引起的血管结构变化。 ?局部血栓性和出血性中风的光诱导作为研究血流和血液 02 响应脑稳态扰动的重新分配的一种手段。该项目将由三个具有合作历史的研究小组合作开展:Kleinfeld,在非线性成像和细胞/系统神经科学方面拥有专业知识; Squier 拥有激光和显微镜设计以及生物成像方面的专业知识; Ifarraguerri 拥有算法设计和生物医学成像方面的专业知识。非线性光学方法的拟议进展将产生用于操纵和探测的新工具
组织。我们将使这些工具可靠并易于生物医学界使用。所提出的模型系统可能会导致临床前模型的改进,以测定中风治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kleinfeld其他文献
David Kleinfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kleinfeld', 18)}}的其他基金
A web-based framework for multi-modal visualization and annotation of neuroanatomical data
基于网络的神经解剖数据多模式可视化和注释框架
- 批准号:
10365435 - 财政年份:2021
- 资助金额:
$ 70.57万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10425220 - 财政年份:2019
- 资助金额:
$ 70.57万 - 项目类别:
Imaging the molecular constituents of the brain vasculature and lymphatic connectome
对脑脉管系统和淋巴连接组的分子成分进行成像
- 批准号:
10834499 - 财政年份:2019
- 资助金额:
$ 70.57万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10021661 - 财政年份:2019
- 资助金额:
$ 70.57万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10640249 - 财政年份:2019
- 资助金额:
$ 70.57万 - 项目类别:
相似国自然基金
基于CRISPR生物技术与双传感效应的光纤传感器及其超灵敏猴痘病毒基因检测研究
- 批准号:62305224
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物技术启发的拓扑合成高分子制备及构效关系研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
下一代工业生物技术:理论与实践
- 批准号:32130001
- 批准年份:2021
- 资助金额:291 万元
- 项目类别:重点项目
定制工程细胞合成生物技术及多样性应用研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
基于流感病毒结构和功能仿生基础的生物技术药物研究
- 批准号:82130100
- 批准年份:2021
- 资助金额:291 万元
- 项目类别:重点项目
相似海外基金
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 70.57万 - 项目类别:
Manipulating Neural Tissue With Ultra-Short Laser Pulses
用超短激光脉冲操纵神经组织
- 批准号:
6943739 - 财政年份:2005
- 资助金额:
$ 70.57万 - 项目类别:
Diffuse optical brain imaging for stroke rehabilitation
弥散光学脑成像用于中风康复
- 批准号:
6773273 - 财政年份:2003
- 资助金额:
$ 70.57万 - 项目类别:
Diffuse optical brain imaging for stroke rehabilitation
弥散光学脑成像用于中风康复
- 批准号:
7048545 - 财政年份:2003
- 资助金额:
$ 70.57万 - 项目类别:
Diffuse optical brain imaging for stroke rehabilitation
弥散光学脑成像用于中风康复
- 批准号:
6872871 - 财政年份:2003
- 资助金额:
$ 70.57万 - 项目类别: