New Multifunctional Thermoplastic Polymer Nanocomposites for Structural Power Materials, Towards Green Aviation

用于结构动力材料的新型多功能热塑性聚合物纳米复合材料,迈向绿色航空

基本信息

  • 批准号:
    2889173
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The transport sector is a significant contributor to greenhouse gases, and electrification of these systems would undoubtedly help to decarbonize the atmosphere. This is where we enter the exciting field of 'Structural Power Composites' which act as both structural materials and energy storage devices. The Imperial College London Structural Power Composites group has already made significant progress in the development of structural supercapacitors. These typically utilize an electrolyte that is made by mixing an epoxy with an Ionic Liquid (IL), however, issues at the microstructural level persist whereby carbon fibers are being sheathed by the structural phase of the electrolyte. Improving the structural electrolyte is still one of the biggest challenges associated with the field. This is because materials with high ionic conductivity typically have poor mechanical performance and vice-versa, so it is difficult to obtain a good balance between the two.The primary aim of this research is to extend the work done on structural supercapacitors by incorporating thermoplastics (TPs) into the electrolyte with the ultimate goal being to improve both the mechanical and electrochemical performance of these devices. Other benefits of using TPs include: higher toughness, improved recyclability and higher chemical stability. Some of the questions that the project intends to answer are: What TPs are suitable to be used in structural electrolytes? Can the use of TPs offer benefits such as lighter-weight energy storage devices? Can structural supercapacitors be manufactured at a lower cost and at a larger scale using TPs in the electrolyte? Can we recycle TP-based structural electrolytes? The main strategies that will be employed are: i) blending TPs with ionic liquids or ii) backfilling porous TPs with liquid electrolytes like aqueous electrolytes, ionic liquids, lithium salts solutions. The first stage of the project will be to select suitable high-performance thermoplastics (HPTPs) based on a few criteria such as the 'glass transition temperature', 'melting temperature', and 'price per unit mass'. The objective will be to conduct solubility tests of these TPs in the ionic liquids, initially qualitatively by observing the behavior when mixing the two together and then quantitatively. The KAT polarity scale is essentially a system that depicts solvent properties using polarity, acidity, and basicity and can be used to quantify the solubility of a TP in an ionic liquid. These KAT parameters for HPTPs are not widely available in the literature and so this research project aims to find and publish them for the wider scientific community. After obtaining the KAT parameters for some common HPTPs, systematic work will be done to build, for the first time, bi-phasic phase diagrams for different HPTP/IL systems. These essentially show how different combinations of HPTPs and IL interact with each other. HPTPs are typically processed at high temperatures which could cause complications when blending the HPTP with the IL, due to possible degradation of the latter. It will therefore be important to study the processing window of the shortlisted HPTPs experimentally, to narrow down the search for the optimal structural electrolyte. After finalizing the possible candidates of HPTPs and ILs, the next objective will be to optimize the structure of the HPTP and IL blends such that they are thoroughly mixed and interconnected. The morphologies obtained will be studied by 'Scanning Electron Microscopy' and the full mechanical and electrochemical properties of the structural electrolyte will be investigated. In conclusion, opening the research on structural electrolytes to TPs could potentially revolutionize the field, bringing us one step closer to greener, more sustainable aviation.
交通运输部门是温室气体的重要贡献者,这些系统的电气化无疑有助于大气脱碳。这就是我们进入“结构动力复合材料”这一激动人心的领域的地方,它既可以作为结构材料,也可以作为储能装置。伦敦帝国学院结构动力复合材料小组已经在结构超级电容器的开发方面取得了重大进展。这些通常使用通过将环氧树脂与离子液体(IL)混合而制成的电解质,然而,微观结构水平上的问题仍然存在,碳纤维被电解质的结构相包裹。改进结构电解质仍然是该领域面临的最大挑战之一。这是因为具有高离子电导率的材料通常机械性能较差,反之亦然,因此很难在两者之间获得良好的平衡。这项研究的主要目的是通过掺入热塑性塑料来扩展在结构超级电容器方面所做的工作( TP)进入电解质,最终目标是提高这些设备的机械和电化学性能。使用 TP 的其他好处包括:更高的韧性、更高的可回收性和更高的化学稳定性。该项目打算回答的一些问题是:哪些TP适合用于结构电解质?使用TP可以带来诸如重量更轻的储能设备之类的好处吗?能否在电解质中使用 TP 以更低的成本和更大规模地制造结构超级电容器?我们可以回收TP基结构电解质吗?将采用的主要策略是:i)将TP与离子液体混合或ii)用液体电解质(例如水性电解质、离子液体、锂盐溶液)回填多孔TP。该项目的第一阶段将根据“玻璃化转变温度”、“熔化温度”和“单位质量价格”等一些标准选择合适的高性能热塑性塑料(HPTP)。目的是对这些 TP 在离子液体中进行溶解度测试,首先通过观察将两者混合在一起时的行为进行定性测试,然后进行定量测试。 KAT 极性标度本质上是一个使用极性、酸度和碱度描述溶剂性质的系统,可用于量化 TP 在离子液体中的溶解度。 HPTP 的这些 KAT 参数在文献中并未广泛提供,因此本研究项目旨在为更广泛的科学界找到并发布它们。在获得一些常见 HPTP 的 KAT 参数后,将进行系统工作,首次构建不同 HPTP/IL 系统的双相相图。这些本质上显示了 HPTP 和 IL 的不同组合如何相互作用。 HPTP 通常在高温下加工,在将 HPTP 与 IL 混合时,由于后者可能发生降解,可能会导致复杂情况。因此,通过实验研究入围的 HPTP 的加工窗口非常重要,以缩小最佳结构电解质的搜索范围。在最终确定 HPTP 和 IL 的可能候选方案后,下一个目标将是优化 HPTP 和 IL 混合物的结构,使它们充分混合和互连。获得的形态将通过“扫描电子显微镜”进行研究,并将研究结构电解质的完整机械和电化学性能。总之,向 TP 开放结构电解质的研究可能会彻底改变该领域,使我们更接近更绿色、更可持续的航空。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
  • DOI:
    10.3390/membranes12121262
  • 发表时间:
    2022-12-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

磁感应-乳化多功能离子液体基微乳液体系的构建及其强化木质素解聚研究
  • 批准号:
    22308107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多功能仿生探针的骨肉瘤肺转移灶演进可视化及其干预策略研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
多功能Ta-SrF2复合材料的设计制备及其生物适配性研究
  • 批准号:
    52371251
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
多功能淫羊藿衍生碳点负载circCSNK1G1-siRNA抑制宫颈癌恶性进展的机制及双模态成像研究
  • 批准号:
    82373107
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
氧化应激介导的介孔SiO2基具有抗肿瘤、诱导成骨的多功能水凝胶的构建以及其机理研究
  • 批准号:
    52362039
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

LEAPS-MPS: Molecular Engineering and Synergic Integration of Perovskite Nanomaterials with Thermoplastic Elastomers for Flexible Multifunctional Optical Materials
LEAPS-MPS:用于柔性多功能光学材料的钙钛矿纳米材料与热塑性弹性体的分子工程和协同集成
  • 批准号:
    2213054
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Advanced Multifunctional Biocomposites from Thermally Stable Biocarbon and High Performance Thermoplastic for Mobility Applications
由热稳定生物碳和高性能热塑性塑料制成的先进多功能生物复合材料,用于移动应用
  • 批准号:
    543861-2019
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Advanced Multifunctional Biocomposites from Thermally Stable Biocarbon and High Performance Thermoplastic for Mobility Applications
由热稳定生物碳和高性能热塑性塑料制成的先进多功能生物复合材料,用于移动应用
  • 批准号:
    543861-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Advanced Multifunctional Biocomposites from Thermally Stable Biocarbon and High Performance Thermoplastic for Mobility Applications
由热稳定生物碳和高性能热塑性塑料制成的先进多功能生物复合材料,用于移动应用
  • 批准号:
    543861-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Advanced Multifunctional Biocomposites from Thermally Stable Biocarbon and High Performance Thermoplastic for Mobility Applications
由热稳定生物碳和高性能热塑性塑料制成的先进多功能生物复合材料,用于移动应用
  • 批准号:
    543861-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了