Understanding receptor-mediated mechanosensing and signalling in cell barrier function during tissue homeostasis and stress responses
了解组织稳态和应激反应期间细胞屏障功能中受体介导的机械传感和信号传导
基本信息
- 批准号:2888176
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project description:A fundamental challenge in biology is understanding how our cells sense, respond, and adapt to a variety ofmicroenvironmental stresses. Mechanisms of cellular adaptation are crucial for maintaining healthy tissue homeostasis,as their failure undermines tissue fitness and contributes to age-related diseases such as chronic inflammation andcancer. The human gut is lined with epithelial cells that form a physical barrier between our bodies and the outside world. A keychallenge for these cells is how to maintain the integrity of this barrier in response to mechanical stress - thebiophysical cues such as stretch, compression and pressure that occur as food is pushed through our gut. In recentyears, mechanical forces have emerged as key regulators of cell behaviour through downstream activation of thetranscriptional co-regulators YAP/TAZ. However, the primary sensors of mechanical stresses upstream of YAP/TAZactivation in this context remain poorly characterised. An important way that cells sense and respond to changes in their environment is through G protein-coupled receptors(GPCRs). We recently identified an orphan receptor (ligands currently unknown) that couples to YAP/TAZ activation inintestinal epithelial cells during microenvironmental stress. However, what this receptor senses remains unknown.Excitingly, newly acquired phosphoproteomics data suggest this receptor signals to proteins involved in cell-celljunctions, extracellular matrix adhesion, and Rho GTPase activity. Since these pathways are known to be closelyinterlinked and important in epithelial barrier function and mechanobiology, we hypothesise that this receptor is acritical mechanosensor that controls barrier integrity in response to biophysical stress. In a multidisciplinary research programme using cutting-edge techniques such as live-cell imaging, 3D organoid cultureand 2D mechanosensing models of the intestinal epithelium, you will investigate how receptor-mediated signallingshapes normal intestinal homeostasis and epithelial barrier function in response to mechanical stress. Genetic loss offunction models will be generated using CRISPR-Cas9, which will be combined with integrative omics (RNAseq andproteomics) for characterisation of receptor-mediate gene signatures. Training will be provided in omics andbioinformatics as well as advanced cell biology techniques including organoid culture, IncuCyte imaging, confocalmicroscopy, RNAi and CRISPR-Cas9. You will carry out your research in modern laboratories supported by cutting edgemicroscopy and proteomics facilities. Understanding the role of this receptor in mechanosensing and barrier functionwill pave the way for the identification of drug targets that could prevent the breakdown of healthy tissue homeostasisand/or promote tissue regeneration in a number of disease contexts including inflammation and cancer.
项目描述:生物学的一个基本挑战是了解我们的细胞如何感知、响应和适应各种微环境压力。细胞适应机制对于维持健康的组织稳态至关重要,因为它们的失败会破坏组织健康并导致慢性炎症和癌症等与年龄相关的疾病。人类肠道内衬有上皮细胞,形成我们的身体和外界之间的物理屏障。这些细胞面临的一个关键挑战是如何保持这一屏障的完整性,以应对机械应力——食物被推入肠道时产生的生物物理线索,如拉伸、压缩和压力。近年来,机械力通过转录共调节因子 YAP/TAZ 的下游激活而成为细胞行为的关键调节因子。然而,在这种情况下,YAP/TAZ 激活上游机械应力的主要传感器的特征仍然很差。细胞感知和响应环境变化的一个重要方式是通过 G 蛋白偶联受体 (GPCR)。我们最近发现了一种孤儿受体(目前未知的配体),它在微环境应激期间与肠上皮细胞中的 YAP/TAZ 激活偶联。然而,这种受体的感觉仍然未知。令人兴奋的是,新获得的磷酸化蛋白质组学数据表明,这种受体向参与细胞-细胞连接、细胞外基质粘附和 Rho GTP 酶活性的蛋白质发出信号。由于已知这些途径在上皮屏障功能和机械生物学中紧密相连且重要,因此我们假设该受体是控制屏障完整性以响应生物物理应激的关键机械传感器。在使用活细胞成像、3D 类器官培养和肠上皮 2D 机械传感模型等尖端技术的多学科研究项目中,您将研究受体介导的信号传导如何塑造正常的肠道稳态和上皮屏障功能以响应机械应力。将使用 CRISPR-Cas9 生成遗传功能丧失模型,该模型将与综合组学(RNAseq 和蛋白质组学)相结合,用于表征受体介导的基因特征。将提供组学和生物信息学以及先进细胞生物学技术的培训,包括类器官培养、IncuCyte 成像、共焦显微镜、RNAi 和 CRISPR-Cas9。您将在由尖端显微镜和蛋白质组学设施支持的现代实验室中进行研究。了解这种受体在机械传感和屏障功能中的作用将为识别药物靶点铺平道路,这些药物靶点可以防止健康组织稳态的破坏和/或促进炎症和癌症等多种疾病背景下的组织再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Cryptococcal granulomas of basal ganglia due to Cryptococcus neoformans in a cat: a case report and literature review.
- DOI:
10.1292/jvms.22-0514 - 发表时间:
2023-03-30 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Cloud transition across the daily cycle illuminates model responses of trade cumuli to warming.
- DOI:
10.1073/pnas.2209805120 - 发表时间:
2023-02-21 - 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
- DOI:
10.1111/jsr.13679 - 发表时间:
2022-12 - 期刊:
- 影响因子:4.4
- 作者:
- 通讯作者:
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
- DOI:
10.3390/membranes12121262 - 发表时间:
2022-12-13 - 期刊:
- 影响因子:4.2
- 作者:
- 通讯作者:
Correction for Paulson et al., Embryonic microRNAs are essential for bovine preimplantation embryo development.
- DOI:
10.1073/pnas.2300306120 - 发表时间:
2023-02-21 - 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
AI-2受体甲基趋化蛋白介导牛月形单胞菌对瘤胃碳水化合物趋化性的作用机制
- 批准号:32302685
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞分泌的Metrnl通过Kit受体介导血管内皮胞吞参与糖尿病视网膜病变的机制研究
- 批准号:82301238
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
酸枣仁皂苷A对三叉神经痛中P2X7受体介导的NLRP3/Caspase-1通路的作用研究
- 批准号:82360199
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
脂质纳米粒体内介导嵌合抗原受体-M1型巨噬细胞协同TLR激动剂治疗实体瘤的研究
- 批准号:82304418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大豆疫霉类受体激酶RLK6的切割介导疫霉菌与寄主博弈机制研究
- 批准号:32302309
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and optimizing antibody-based interventions against neonatal HSV infection
了解和优化针对新生儿 HSV 感染的抗体干预措施
- 批准号:
10752835 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deciphering the complex pharmacology of CB1: towards the understanding of a third signaling pathway
解读 CB1 的复杂药理学:了解第三条信号通路
- 批准号:
10667865 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Understanding how neuronal glucose metabolism changes in AD due to ApoE4
了解 AD 中 ApoE4 导致的神经元葡萄糖代谢如何变化
- 批准号:
10680020 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Understanding How Liver X Receptor Beta Antagonism Alleviates Glucocorticoid Mediated Adipose Tissue Dysfunction
了解肝脏 X 受体 β 拮抗作用如何减轻糖皮质激素介导的脂肪组织功能障碍
- 批准号:
486196 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship Programs
Understanding and manipulating programmed cell death (PCD) pathways to facilitate lymphoid tumor killing by CAR T cells
了解和操纵程序性细胞死亡 (PCD) 途径以促进 CAR T 细胞杀死淋巴肿瘤
- 批准号:
10326860 - 财政年份:2021
- 资助金额:
-- - 项目类别: