Enhancing Ensemble Diversity in Neural Ensemble Search for Uncertainty Quantification

增强神经集成搜索中的集成多样性以实现不确定性量化

基本信息

  • 批准号:
    2872703
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

This project falls within the EPSRC `Artificial intelligence technologies' research area.It is an investigation into how to enhance uncertainty quantification through ensembles of deep neural networks.Especially for safety-critical applications such as autonomous driving or medical diagnosis, uncertainty quantification is relevant, however, neural networks are often badly calibrated and display either overly high or low confidence in their predictions. A popular non-Bayesian approach to improve calibration in neural networks is deep ensembles which average predictions of neural networks that have been trained from different random initialisations thereby achieving competitive predictive accuracy and calibration.To further enhance performance, methods proposed in the literature for automatically constructing ensembles of neural networks with varying architectures. They show that architectural variation leads to higher ensemble diversity resulting in ensembles with higher uncertainty calibration and robustness compared to the previous state-of-the-art deep ensembles.To automatically choose base learner architectures they suggest random search in combination with a greedy selection algorithm (NES-RS), an approach that is easily parallelisable, and a more sophisticated evolutionary algorithm based on regularized evolution (NES-RE), which exhibits better performance. Concurrent to this, Wenzel et al. proposed hyper-deep ensembles which aggregate ensembles over different random initialisations stratified over multiple random hyperparameters. However, they keep the architecture of their base learners fixed. The authors show that this approach for inducing diversity into ensembles also leads to increased predictive accuracy and calibration compared to deep ensembles.Therefore, the question arises whether a more directed search for hyperparameters can benefit the construction of more accurate, well-calibrated, and robust ensembles of neural networks, and, moreover, whether it is possible to achieve even better results by integrating the two approaches and extend NES-RE to search for optimal combinations of architecture and hyperparameters (e.g., dropout rate and different L2-regularizers) in base learners.This project will explore this novel approach by experimenting with different modifications to NES-RS and NES-RE that enable searching for ensembles with both varying architectures and hyperparameters simultaneously.Aims and Objectives1. Improve upon the current state-of-the-art NES-RE in terms of uncertainty quantification and robustness.2. If this is the case, investigate whether this approach to uncertainty quantification can aid safety in autonomous driving
该项目属于 EPSRC“人工智能技术”研究领域。它是对如何通过深度神经网络集合增强不确定性量化的研究。特别是对于自动驾驶或医疗诊断等安全关键应用,不确定性量化是相关的,然而,神经网络通常校准不当,并且对其预测表现出过高或过低的置信度。改进神经网络校准的一种流行的非贝叶斯方法是深度集成,它对从不同随机初始化训练的神经网络进行平均预测,从而实现有竞争力的预测精度和校准。为了进一步提高性能,文献中提出了自动构建的方法具有不同架构的神经网络集合。他们表明,与之前最先进的深度集成相比,架构变化会导致更高的集成多样性,从而使集成具有更高的不确定性校准和鲁棒性。为了自动选择基础学习器架构,他们建议结合贪婪选择算法进行随机搜索(NES-RS),一种易于并行化的方法,以及一种基于正则化进化(NES-RE)的更复杂的进化算法,它表现出更好的性能。与此同时,Wenzel 等人。提出了超深度集成,该集成在多个随机超参数上分层的不同随机初始化上聚合集成。然而,他们保持基础学习器的架构固定。作者表明,与深度集成相比,这种将多样性引入集成的方法还可以提高预测准确性和校准能力。因此,出现的问题是,更直接地搜索超参数是否有利于构建更准确、校准良好和鲁棒的模型神经网络的集成,此外,是否有可能通过整合这两种方法并扩展 NES-RE 来搜索架构和超参数(例如,dropout 率)的最佳组合来获得更好的结果和不同的 L2 正则化器)。该项目将通过试验对 NES-RS 和 NES-RE 的不同修改来探索这种新颖的方法,从而能够同时搜索具有不同架构和超参数的集成。目的和目标 1。在不确定性量化和鲁棒性方面改进了当前最先进的NES-RE。2.如果是这种情况,请调查这种不确定性量化方法是否有助于自动驾驶的安全

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
  • DOI:
    10.3390/membranes12121262
  • 发表时间:
    2022-12-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于WRF-Mosaic近似不同下垫面类型改变对区域能量和水分循环影响的集合模拟
  • 批准号:
    41775087
  • 批准年份:
    2017
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目

相似海外基金

粒界異常析出現象と巨大ひずみ加工の協奏による超微細粒ハイエントロピー合金の創成
晶界异常析出现象与大应变处理协同创建超细晶高熵合金
  • 批准号:
    24K01198
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ヴァイオリン合奏を成立させる情報交換方略の解明:周辺視野と操作音に着目して
阐明小提琴合奏团成功的信息交换策略:关注周边视觉和操作声音
  • 批准号:
    24KJ2091
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
  • 批准号:
    24K07131
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
金属間協奏作用による安定な化学結合の活性化を可能とする卑金属多核錯体触媒の開発
开发贱金属多核配合物催化剂,通过金属间合作激活稳定的化学键
  • 批准号:
    23K23344
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
異方性量子ドット三次元超格子の化学合成と協奏的光学特性の開拓
各向异性量子点三维超晶格的化学合成及其协同光学特性的发展
  • 批准号:
    23K26495
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了