Nogo Receptor Family: Novel Mechanisms to Inhibit Growth
Nogo 受体家族:抑制生长的新机制
基本信息
- 批准号:7236754
- 负责人:
- 金额:$ 4.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-08-02 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffinityAnimal ModelAttenuatedAxonBindingBiochemicalBiological AssayBiologyBrainC-terminalCell Surface ReceptorsCell membraneCellsCellular MorphologyClassificationComplexCouplingCytoplasmic TailDockingDrug or chemical Tissue DistributionEctopic ExpressionEmbryoEngineeringEnvironmentFailureFamilyFamily memberGene FamilyGene TargetingGenerationsGeneticGlycoproteinsGlycosaminoglycansGoalsGrowthHeartHeparan Sulfate ProteoglycanHumanImmune SeraImmunoprecipitationIn VitroInjuryInvestigationKnockout MiceLaboratoriesLigand BindingLigand Binding DomainLigandsLinkMapsMediatingMediator of activation proteinMolecularMotorMusMutateMyelinMyelin Associated GlycoproteinNGFR ProteinNatural regenerationNatureNervous System TraumaNervous system structureNeuraxisNeuritesNeurogliaNeuronal PlasticityNeuronsOrganismParalysedPatternPhenotypePrincipal InvestigatorProcessPropertyProteinsRattusReagentReceptor GeneReceptor SignalingRecombinantsRefractoryRoleRole playing therapySequence HomologySeriesSignal PathwaySignal TransductionSiteSpecificitySpinalSpinal CordSpinal cord injuryStressTestingTherapeutic InterventionThinkingViral Vectoraxon growthaxon regenerationbasecentral nervous system injurydesignfunctional restorationgain of functionglycosaminoglycan receptorgranule cellin vivoinhibitor/antagonistinjuredinsightloss of functionmedical complicationmemberneuronal cell bodynoveloligodendrocyte-myelin glycoproteinpostnatalpreferenceprogramspromoterreceptorreceptor functionrepairedresearch studyresponsesyndecansyndecan 3transcriptional coactivator p75
项目摘要
DESCRIPTION (provided by applicant): Traumatic injury of the spinal cord in humans leads to permanent paralysis and other serious medical complications. Paralysis is a result of lost neuronal connectivity between the brain and spinal cord motor units. The failure of severed spinal axons to recover, however, is not primarily due to an intrinsic inability to regenerate, but is a result of the central nervous system (CNS) environment that is highly refractory to axonal growth. When provided with a suitable environment, injured CNS axons do recover, extending processes over long distances and partially restoring function in animal models of spinal cord injury (SCI). Multiple CNS myelin constituents are thought to directly contribute to the regenerative failure of damaged spinal axons, including proteins called Nogo, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). The main objective of this study is to gain insights into the molecular and cellular mechanisms of myelin-mediated inhibition of axonal growth. A detailed understanding of the biology of axon-glia interaction is a prerequisite to devising strategies aimed at lowering the growth inhibitory barrier of adult CNS myelin and to promote neuronal repair following traumatic injury of the CNS. The identification, of a novel family of receptor proteins comprised of members with distinct binding specificities toward established myelin inhibitors of axonal growth is at the heart of our investigations. A major goal of the proposed study is to define the role of these receptors in neuronal responses to CNS myelin inhibitors. To functionally characterize members of this gene family, we will engineer recombinant viral vectors for gain-of-function studies in neurons. Mouse genetics will be used for loss-of-function studies in vivo. In a parallel approach, we will develop mutated receptors with antagonistic function. Mutated soluble receptors that still bind ligand but no longer possess the ability to signal axonal growth inhibition will be assessed for their potential to promote axonal growth on myelin substrate in vitro. Coupling our biochemical approaches with in vitro neurite outgrowth assays and in vivo functional studies will provide a strong basis to elucidate the role played by novel receptor-ligand interactions in neurite outgrowth inhibition. Together, this family of receptor proteins may provide new molecular handles for the design of therapeutic interventions for CNS injuries.
描述(由申请人提供):人类脊髓的创伤性损伤导致永久性麻痹和其他严重的医疗并发症。瘫痪是大脑和脊髓运动单位之间神经元连通性丧失的结果。但是,切断的脊柱轴突无法恢复,这并不主要是由于内在无法再生的原因,而是中枢神经系统(CNS)环境对轴突生长高度难治性的结果。当提供合适的环境时,受伤的CNS轴突确实会恢复,从而在长距离上扩展过程,并在脊髓损伤动物模型(SCI)中部分恢复功能。人们认为多种CNS髓磷脂成分直接导致受损的脊柱轴突的再生衰竭,包括称为Nogo,与髓磷脂相关的糖蛋白(MAG)和少突胶质细胞蛋白酶糖蛋白糖蛋白糖蛋白(OMGP)的蛋白质。这项研究的主要目的是了解髓磷脂介导的轴突生长抑制的分子和细胞机制。对Axon-GLIA相互作用的生物学的详细理解是制定旨在降低成年CNS髓磷脂生长抑制障碍并在CNS创伤后促进神经元修复的策略的先决条件。我们研究的新型受体蛋白家族的鉴定是对轴突生长的建立髓磷脂抑制剂具有独特结合特异性的组成的核心。该研究的主要目的是定义这些受体在对CNS髓磷脂抑制剂的神经元反应中的作用。为了在功能上表征该基因家族的成员,我们将设计重组病毒向量,以在神经元中的功能性研究。小鼠遗传学将用于体内功能丧失研究。在平行的方法中,我们将开发具有拮抗功能的突变受体。仍将结合配体但不再具有信号轴突生长抑制的能力的突变的可溶性受体将被评估,以评估其在体外促进髓磷脂底物上轴突生长的潜力。将我们的生化方法与体外神经突生长测定法和体内功能研究结合在一起,将提供有力的基础,以阐明新型受体 - 配体相互作用在神经突生长抑制中的作用。总之,这种受体蛋白家族可能会为中枢神经系统损伤的治疗干预提供新的分子手柄。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Jeno Giger其他文献
Roman Jeno Giger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Jeno Giger', 18)}}的其他基金
Development of live-cell probes to investigate tubulin post-translational modifications in neuronal regeneration
开发活细胞探针来研究神经元再生中微管蛋白翻译后修饰
- 批准号:
10648255 - 财政年份:2023
- 资助金额:
$ 4.89万 - 项目类别:
Nogo Receptor Family: Novel Mechanisms to Inhibit Growth
Nogo 受体家族:抑制生长的新机制
- 批准号:
7116772 - 财政年份:2004
- 资助金额:
$ 4.89万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 4.89万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 4.89万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 4.89万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 4.89万 - 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 4.89万 - 项目类别: