Duality Invariant Supergravity, String Geometry and Global Properties of T-Duality in arbitrary Dimension and Signature

任意维度和签名中的对偶不变超引力、弦几何和T-对偶的全局性质

基本信息

  • 批准号:
    2751314
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

T-duality is one of the symmetries that sets string theory apart from theories based on point particles. It states that a string theory compactified on a circle of radius R is equivalent to another string theory compactified on a circle of radius 1/R. This shows that string theory requires us to replace the Riemannian geometry underlying general relativity with a new type of geometry, for which various working proposals exist. While T-duality with respect to spatial dimensions is well understood, T-duality transformations with respect to time-like dimensions are also possible and lead to new exotic string theories, which can have non-standard kinetic terms for some of the fields, or a non-standard number of time-like dimensions. Understanding the status of these exotic string theories is crucial for understanding what string theory fundamentally is, and what type of geometry should replace Riemannian geometry.The embedding of solutions into string theory will be used to study their lifts to 10 and 11 dimensions. By identifying the fundamental constituents of solutions in terms of D-branes, Euclidean branes and other string solitons, the underlying microscopic degrees of freedom will be identified. This will allow to relate the thermodynamic partition functions derived from four-dimensional solutions with statistical partition functions.The methods used in this project combine those of supergravity and string theory with differential geometry. Geometrical formalisms which aim at making T-duality a manifestly geometrical symmetry, such as doubled and exceptional geometry will be adapted to study black holes and cosmological spacetimes globally. A particularly interesting question is how horizons get mapped to other types of interfaces, and whether some singularities are removed by stringy effects. The formalism of doubled and exceptional field theory can be used to build string-effective supergravity theories which are manifestly invariant under string dualities. Another objective of this project is to investigate whether the exceptional formulations of maximal supergravities in five and four dimensions can be consistently truncated to N=2 supergravities. This will give insight into whether these frameworks can be applied more broadly to non-maximally supersymmetric string compactifications. It would be interesting to study whether these formalisms can provide new insights into black hole and cosmological space-time geometries. Since type-II double field theory naturally includes type-II* supergravity, a natural starting point is to investigate the action of T-duality on non-extremal Killing horizons and on singularities. Another point to investigate is how doubled spacetimes describing black holes and cosmologies can be characterised in terms of para-Hermitian geometry.
t偶尔是设置弦理论与基于点粒子的理论不同的对称性之一。它指出,在半径r圆上压实的弦理论等于在半径1/r圆上压实的另一个弦理论。这表明弦理论要求我们用一种新的几何形状代替一般相对性的基本几何形状,为此,存在各种工作建议。虽然对空间维度的T偶对性有充分的理解,但T二维的转换相对于时间样的维度也是可能的,并且导致了新的外来弦理论,这可能具有某些字段的非标准动力学术语,或者是非标准的时间次数。了解这些异国情调的弦理论的状态对于理解弦理论从根本上是什么是至关重要的,以及哪种类型的几何形状应取代riemannian几何形状。将解决方案嵌入弦理论将用于研究其升力至10和11维度。通过确定解决方案的基本成分,从D-BRANES,EUCLIDEAN BRANES和其他弦乐器方面,可以确定基本的显微镜自由度。这将允许将来自四维解的热力学分区功能与统计分区函数相关联。该项目中使用的方法将超级和弦理论的方法与差异几何形状相结合。旨在使T偶偶性成为明显的几何对称性的几何形式主义,例如翻倍和异常的几何形状将在全球范围内研究黑洞和宇宙学的空间。一个特别有趣的问题是,如何将视野映射到其他类型的界面,以及是否通过刺激效果消除了某些奇异性。可以使用加倍和特殊场理论的形式主义来构建弦乐有效的超级重力理论,这些理论显然在弦上二重性下是不变的。该项目的另一个目的是研究五个维度和四个维度中最大超级最大超级的特殊表述是否可以始终如一地截断为n = 2个超级重力。这将深入了解这些框架是否可以更广泛地应用于非最大的超对称弦线压缩。研究这些形式主义是否可以为黑洞和宇宙时空几何形状提供新的见解将很有趣。由于II型双场理论自然包含II*超级重力,因此自然的起点是研究T偶偶性对非超级杀戮视野和奇异性的作用。要研究的另一点是如何以para-hermitian几何形状来描述黑洞和宇宙学的两倍时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

其他文献

Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
  • DOI:
    10.1038/s41598-023-40425-w
    10.1038/s41598-023-40425-w
  • 发表时间:
    2023-08-16
    2023-08-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
共 3349423 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 669885
前往

的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship

相似国自然基金

数据驱动的快速射电暴物理起源和标度不变性研究
  • 批准号:
    12373053
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
等变与不变深度特征学习及其在3D数据分析中的应用
  • 批准号:
    62306167
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合范畴的Casimir不变量与Grothendieck代数的表示
  • 批准号:
    12371041
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
系统辨识的思想创新:从不变子空间到不变流形
  • 批准号:
    62350003
  • 批准年份:
    2023
  • 资助金额:
    110.00 万元
  • 项目类别:
    专项项目
Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: A Task-Invariant Customization Framework for Lower-Limb Exoskeletons to Assist Volitional Human Motion
职业生涯:用于辅助人类意志运动的下肢外骨骼的任务不变定制框架
  • 批准号:
    2340261
    2340261
  • 财政年份:
    2024
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
    2400191
  • 财政年份:
    2024
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
  • 批准号:
    2349623
    2349623
  • 财政年份:
    2024
  • 资助金额:
    --
    --
  • 项目类别:
    Continuing Grant
    Continuing Grant
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
  • 批准号:
    2348792
    2348792
  • 财政年份:
    2024
  • 资助金额:
    --
    --
  • 项目类别:
    Standard Grant
    Standard Grant
Number theory of prehomogeneous vector spaces
预齐次向量空间的数论
  • 批准号:
    23K03052
    23K03052
  • 财政年份:
    2023
  • 资助金额:
    --
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)