CAREER: A Task-Invariant Customization Framework for Lower-Limb Exoskeletons to Assist Volitional Human Motion

职业生涯:用于辅助人类意志运动的下肢外骨骼的任务不变定制框架

基本信息

  • 批准号:
    2340261
  • 负责人:
  • 金额:
    $ 57.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) award will support research that advances knowledge in the control and optimization of lower-limb exoskeletons in providing their human users with customized assistance across locomotor tasks. Conventional customization paradigms often aim at optimizing parameters of pre-defined torque profiles for specific locomotor tasks, which cannot accommodate the continuously varying activities humans perform every day. Prevalent approaches also place emphasis on minimizing slow-converging energy expenditures associated with human locomotion, which is important for able-bodied persons but might not be of high priority for individuals with pathological gaits. The goal of this project is to provide a paradigm shift from task-specific, slow convergent customization to task-invariant, rapid customization. This research will facilitate active learning and adaptation of lower-limb exoskeletons to drastically reduce the cost of gait rehabilitation for nearly a million Americans who sustain a new stroke every year. Key parameters throughout gait rehabilitation such as body-weight support ratio will be automatically customized based on stroke subject's training progress, which will otherwise be tuned by a team of therapists and engineers that usually lasts for hours. This research will also promote the use of exoskeletons for able-bodied users in manufacturing sites, warehouses, battlefields, and other relevant scenes by reducing the associated costs in control parameter customization. The integrated education plan will help cultivate the next-generation wearable robot researchers and motivating K-12 students to further pursue STEM degrees. The human subject studies and exhibits will promote the awareness of wearable technologies among the public, especially among traditionally underrepresented groups.The goals of this project are to: 1) investigate invariant assistive strategies in continuously varying locomotor tasks and environments, 2) construct a complete framework for customizing exoskeleton assistance across locomotor tasks, and 3) understand how the customization framework facilitates assistance adaptations to different user’s volitional motion and activities. Utilizing a two-layer optimization structure will rapidly determine task-invariant assistive strategies in the inner-loop through tracking the desired energetics or centroidal momentum of a virtual reference model, meanwhile updating its parameters in the outer-loop based on human performance-based cost functions. The research the PI and his team will conduct will investigate task-invariant assistive strategies that alter human body energetics and centroidal momentum, construct a complete, human-in-the-loop customization framework that rapidly customizes these two quantities, and validate its efficacy via experiments on human subjects across various locomotor tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展(职业)奖将支持研究,以在低LIMB外骨骼控制和优化的知识方面为其人类用户提供跨运动任务的自定义帮助。常规的自定义范例通常旨在优化特定运动任务的预定扭矩轮廓的参数,这些参数无法适应人类每天执行的连续变化的活动。普遍的方法还强调最大程度地减少与人类运动相关的慢置能量消耗,这对于身体健全的人来说很重要,但对于病理步态的人来说可能不是很高的优先事项。该项目的目的是提供从特定于任务的,缓慢的收敛自定义到任务不变的快速自定义的范式转变。这项研究将有助于积极学习和适应下限的外骨骼,以大大降低每年维持新中风的近一百万美国人的步态康复成本。整个步态康复中的关键参数,例如体重支持率,将根据Stroke受试者的训练进度自动定制,否则,通常会持续数小时的治疗师和工程师团队进行调整。这项研究还将通过降低控制参数定制的相关成本来促进在制造网站,仓库,战场和其他相关场景中在制造网站,仓库,战场和其他相关场景中使用外骨骼的使用。综合教育计划将有助于培养下一代可穿戴的机器人研究人员,并激励K-12学生进一步购买STEM学位。人类主题的研究和展览将促进公众之间对可穿戴技术的认识,尤其是在传统上代表性不足的群体中。该项目的目标是:1)调查不变的辅助策略,以不断变化的运动任务和环境,2)构建各种跨越型号的范围,以构建各种型号的范围,并了解各种型号的范围,并了解各种型号的范围。和活动。利用两层优化结构将通过跟踪虚拟参考模型的所需能量或质心动量来迅速确定内循环中的任务不变辅助策略,这是指基于人类绩效的基于基于人类绩效的成本功能的外循环中更新其参数的同时。 PI和他的团队将进行的研究将调查任务不断变化的辅助策略,这些策略改变了人体能量和中心动量,构建了一个完整的,人类的环境定制框架,迅速自定义这两个数量,并通过实验对人类的实验来确认其有效性,这些框架对人类的主体进行了各种智力的授权,并反映了NSF的范围,并反映了NSF的范围。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ge Lv其他文献

A Two-Layer Human-in-the-Loop Optimization Framework for Customizing Lower-Limb Exoskeleton Assistance
用于定制下肢外骨骼辅助的两层人在环优化框架
Soft Robotics for Fall Mitigation: Preliminary Design and Evaluation of a Wearable System using Continuum Robots
用于减轻跌倒的软机器人:使用 Continuum 机器人的可穿戴系统的初步设计和评估
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Param Malhotra;Nithesh Kumar;Chase G. Frazelle;Ian D. Walker;Ge Lv
  • 通讯作者:
    Ge Lv
Task-Invariant Centroidal Momentum Shaping for Lower-Limb Exoskeletons
下肢外骨骼的任务不变质心动量整形
On the Design and Control of Highly backdrivable lower-limb exoskeletons
高度可反向驱动下肢外骨骼的设计与控制
  • DOI:
    10.1310/jb16-v04f-jal5-h1uv
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ge Lv;Hanqi Zhu;R. Gregg
  • 通讯作者:
    R. Gregg

Ge Lv的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于多任务深度学习的图像语义分割方法研究
  • 批准号:
    61703417
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
相空间结构相关理论及在任务设计中的应用
  • 批准号:
    11603011
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
多标绘规则下手绘符号草图识别研究
  • 批准号:
    61603402
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
小行星引力场中考虑航天器姿轨耦合效应的轨道动力学
  • 批准号:
    11602009
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
平动点任务节能轨道设计与优化技术研究
  • 批准号:
    11102207
  • 批准年份:
    2011
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
  • 批准号:
    2337351
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Continuing Grant
Comparing cognitive flexibility in wild and captive Japanese macaques using a touchscreen reversal learning task
使用触摸屏逆转学习任务比较野生和圈养日本猕猴的认知灵活性
  • 批准号:
    24K16871
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
  • 批准号:
    24K20789
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
  • 批准号:
    10110390
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
    EU-Funded
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
  • 批准号:
    EP/Y015886/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了