Integrating, Validating & Applying Pharmacogenetic Data

整合、验证

基本信息

  • 批准号:
    7089554
  • 负责人:
  • 金额:
    $ 21.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-04-01 至 2006-09-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The mission of the Gene Security Network (GSN) is to create a system that enables clinicians to use aggregated genetic and phenotypic data from clinical trials and treatment records to make the safest, most effective treatment decisions for each patient. A patient's unique response to clinical therapy is dependent on his or her genetic composition, as well as the biomolecular nature of the disease process. Academic institutions are rapidly accumulating clinical data, representing a vanguard in the trend towards personalized medicine, but a lack of technology systems and format standards for the integration and validation of data makes it difficult to successfully interpret and predict individual patient responses. For Phase I, we focus on three key components of the GSN mission: i) to create a standardized ontology and translation engine for efficient integration and validation of pharmacokinetic data, ii) to use the translation engine to integrate multiple sets of pharamacokinetic data into the standardized ontology, and iii) to develop statistical methods to perform data validation and outcome prediction with the integrated genetic and phenotypic data. To demonstrate the utility of our approach, we are collaborating with the PharmGKB Project at Stanford University. PharmGKB manages an openly-shared Internet repository for clinical trial data with the intent to uncover how individual genetic variation contributes to distinctive reactions to Pharmaceuticals. As a member of the NIH Pharmacogenetics Research Network (PGRN), PharmGKB's database includes extensive pharmacokinetic and genomic records from cardiovascular, pulmonary, and cancer research. Here we focus on breast and colon cancer treatment, both of which could be considerably enhanced by the integration of diverse genetic and phenotypic data into a standardized ontology, validation of the data, and statistical analysis of data to predict drug efficacy and side-effect profiles. Underdetermined and ill-conditioned data sets are common for these diseases, as for many genotypic and phenotypic modeling problems, where the number of possible predictors? genes, proteins, or mutation sites? Is large relative to the number of measured outcomes. For specific Aim I, we focus on creating a standardized ontology and translation engine for PharmGKB data. For Aim 2, we concentrate on the integration and analysis of pharmacokinetic data associated with PharmGKB's breast cancer and colon cancer data. For Aim 3, we train statistical models on the integrated data to show how the data can be used to enhance the efficacy and safety of certain drugs. In subsequent phases the prototype system will be extended to accommodate other forms of data and types of diseases, and functionality will be provided for a clinician to select a trial, submit relevant data for a new patient, and view predictions and confidence bounds for key outcomes given different interventions for that patient using models trained on the integrated trial data. Details are to be provided in a phase II application subsequent to completion of Phase I. The amount of data that clinicians must compile and digest to provide their patients with optimal care is rapidly expanding and is increasingly daunting. The Gene Security Network stands to significantly reduce this burden and greatly improve the speed and accuracy of clinical decision-making.
描述(由申请人提供):基因安全网络 (GSN) 的使命是创建一个系统,使临床医生能够使用临床试验和治疗记录中汇总的遗传和表型数据,为每位患者做出最安全、最有效的治疗决策。患者对临床治疗的独特反应取决于他或她的遗传组成以及疾病过程的生物分子性质。学术机构正在迅速积累临床数据,代表着个性化医疗趋势的先锋,但缺乏用于整合和验证数据的技术系统和格式标准,使得难以成功解释和预测个体患者的反应。对于第一阶段,我们重点关注 GSN 使命的三个关键组成部分:i)创建标准化本体和翻译引擎,以有效集成和验证药代动力学数据,ii)使用翻译引擎将多组药代动力学数据集成到标准化本体论,以及 iii) 开发统计方法,利用综合遗传和表型数据进行数据验证和结果预测。为了展示我们方法的实用性,我们正在与斯坦福大学的 PharmGKB 项目合作。 PharmGKB 管理着一个公开共享的临床试验数据互联网存储库,旨在揭示个体遗传变异如何导致对药物的独特反应。作为 NIH 药物遗传学研究网络 (PGRN) 的成员,PharmGKB 的数据库包含来自心血管、肺部和癌症研究的广泛药代动力学和基因组记录。在这里,我们重点关注乳腺癌和结肠癌的治疗,通过将不同的遗传和表型数据整合到标准化本体中、验证数据以及对数据进行统计分析以预测药物疗效和副作用特征,可以大大增强这两种癌症的治疗。对于这些疾病来说,不确定和病态的数据集很常见,对于许多基因型和表型建模问题,可能的预测因子有多少?基因、蛋白质或突变位点? 相对于测量结果的数量来说很大。对于具体目标 I,我们专注于为 PharmGKB 数据创建标准化本体和翻译引擎。对于目标 2,我们专注于与 PharmGKB 的乳腺癌和结肠癌数据相关的药代动力学数据的整合和分析。对于目标 3,我们根据综合数据训练统计模型,以展示如何使用这些数据来提高某些药物的功效和安全性。在后续阶段,原型系统将扩展以适应其他形式的数据和疾病类型,并将为临床医生提供选择试验、提交新患者的相关数据以及查看关键结果的预测和置信区间的功能使用根据综合试验数据训练的模型对该患者采取不同的干预措施。详细信息将在第一阶段完成后的第二阶段申请中提供。临床医生必须编译和消化才能为患者提供最佳护理的数据量正在迅速增加,并且越来越令人畏惧。基因安全网络将显着减轻这一负担,并大大提高临床决策的速度和准确性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Rabinowitz其他文献

Matthew Rabinowitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Rabinowitz', 18)}}的其他基金

Non-invasive Aneuploidy Screening of Circulating Fetal Cells for Prenatal Diagnos
用于产前诊断的循环胎儿细胞的无创非整倍性筛查
  • 批准号:
    7910271
  • 财政年份:
    2010
  • 资助金额:
    $ 21.89万
  • 项目类别:
Non-invasive Aneuploidy Screening of Circulating Fetal Cells for Prenatal Diagnos
用于产前诊断的循环胎儿细胞的无创非整倍性筛查
  • 批准号:
    8268379
  • 财政年份:
    2010
  • 资助金额:
    $ 21.89万
  • 项目类别:
Non-invasive Aneuploidy Screening of Circulating Fetal Cells for Prenatal Diagnos
用于产前诊断的循环胎儿细胞的无创非整倍性筛查
  • 批准号:
    8235596
  • 财政年份:
    2010
  • 资助金额:
    $ 21.89万
  • 项目类别:
Array informatics to understand ploidy concordance
阵列信息学以了解倍性一致性
  • 批准号:
    7782362
  • 财政年份:
    2009
  • 资助金额:
    $ 21.89万
  • 项目类别:
Array informatics to understand ploidy concordance
阵列信息学以了解倍性一致性
  • 批准号:
    7612192
  • 财政年份:
    2009
  • 资助金额:
    $ 21.89万
  • 项目类别:
Array informatics to understand ploidy concordance
阵列信息学以了解倍性一致性
  • 批准号:
    7941702
  • 财政年份:
    2009
  • 资助金额:
    $ 21.89万
  • 项目类别:
Novel Informatics for Highly Reliable Multi-Locus Allele Calling for Embryo Scree
用于胚胎筛选的高度可靠的多位点等位基因调用的新颖信息学
  • 批准号:
    7541479
  • 财政年份:
    2007
  • 资助金额:
    $ 21.89万
  • 项目类别:
Novel Informatics for Highly Reliable Multi-Locus Allele Calling for Embryo Scree
用于胚胎筛选的高度可靠的多位点等位基因调用的新颖信息学
  • 批准号:
    7686149
  • 财政年份:
    2007
  • 资助金额:
    $ 21.89万
  • 项目类别:
Phase I Application: Cleaning of Single Cell DNA Measurements In-Silico
第一阶段应用:单细胞 DNA 测量的计算机清洗
  • 批准号:
    7222074
  • 财政年份:
    2007
  • 资助金额:
    $ 21.89万
  • 项目类别:
Novel Statistical Methods for Improving the Prediction of HIV-1 Response to ART a
改善 HIV-1 对 ART 反应预测的新统计方法
  • 批准号:
    7167195
  • 财政年份:
    2006
  • 资助金额:
    $ 21.89万
  • 项目类别:

相似海外基金

Core 1: Biostatistics & Bioinformatics Core
核心1:生物统计学
  • 批准号:
    10716157
  • 财政年份:
    2023
  • 资助金额:
    $ 21.89万
  • 项目类别:
ORION: Oncology Research Integration using OHDSI-based NLP (NCI Cancer Informatics Scholar)
ORION:使用基于 OHDSI 的 NLP 进行肿瘤学研究整合(NCI 癌症信息学学者)
  • 批准号:
    10891217
  • 财政年份:
    2023
  • 资助金额:
    $ 21.89万
  • 项目类别:
Arsenic and other co-metals in the San Carlos Apache drinking water
圣卡洛斯阿帕奇饮用水中的砷和其他共金属
  • 批准号:
    10302159
  • 财政年份:
    2021
  • 资助金额:
    $ 21.89万
  • 项目类别:
An exploration of pathways for exercise referrals in rural cancer community settings
农村癌症社区环境中运动转介途径的探索
  • 批准号:
    10815891
  • 财政年份:
    2021
  • 资助金额:
    $ 21.89万
  • 项目类别:
Addressing the burden of untreated HIV in cancer patients in sub-Saharan Africa: feasibility and planning for a pragmatic clinical trial
解决撒哈拉以南非洲癌症患者未经治疗的艾滋病毒负担:实用临床试验的可行性和规划
  • 批准号:
    10379415
  • 财政年份:
    2021
  • 资助金额:
    $ 21.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了