Classical simulation and verification of quantum computation using matchgates and magic states

使用匹配门和魔法状态进行量子计算的经典模拟和验证

基本信息

  • 批准号:
    2746767
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Quantum computers allow one to explore computational regimes which are believed to be beyond the reach of current classical computing. Therefore, it is unlikely that universal quantum computers can be efficiently simulated by classical probabilistic algorithms. This is in part because the state-of-the-art classical simulators which rely on the power of modern supercomputers struggle to simulate any quantum system beyond 50 qubits. At the same time, certain quantum information processing tasks do not require computational universality. In some scenarios, there are provable benefits, such as an exponential reduction in communication resources for some distributed computing tasks (e.g. Raz 1999) and in quantum cryptography, the ability to communicate with unconditional security against eavesdropping. To realize quantum computation in a circuit model one has to pick a universal gate set. One of the most prominent gatesets which enables universal quantum computation is made of Clifford + T gates. Clifford gates are efficiently classically simulatable, however, when you add a special single-qubit T gate you regain the full power of quantum computation. In 2016, Bravyi et al. introduced a quantity called stabilizer rank. It helps reduce this exponential scaling by significantly decreasing the scaling of resources required to classically simulate quantum systems. The ability to classically simulate generic quantum computations, while unlikely to be possible for a large number of qubits, is of great importance in the noisy intermediate-term quantum computation (NISQ). Another very natural gateset which enables universal quantum computation is made of so-called Matchgates + Magic states. Matchgates are an especially multiflorous class of two-qubit nearest neighbour quantum gates, defined by a set of algebraic constraints. They occur for example in the theory of perfect matchings of graphs, non-interacting fermions, and one-dimensional spin chains. The goal of the project is to study the analogous notion to stabilizer rank for matchgates - the so-called Gaussian rank and study the computational complexity of approximating this quantity. Currently, nearly nothing is known about Gaussian rank and unlike its stabilizer counterpart, the decompositions of n copies of magic states in terms of Gaussian states for n>3 are not known. This problem presents a unique set of challenges suitable for a strong PhD student and would require a combination of techniques: from numerical exploration for a small number of qubits to proof-based techniques which rely on the unique structural properties of Gaussian states. Computing the exact Gaussian rank for a large number of copies of magic states has a number of important applications for the emerging small-to-medium scale quantum computers. First, it would enable one to verify quantum computations for a non-trivial number of qubits (20-300), which is likely to be the milestoneSecond, it would provide unique insights into the complexity of fermionic linear optics and its abilities to achieve universal quantum computations when supplemented with magic states. Thirdly, it would allow one to design novel quantum error-correcting codes as well as efficient classical decoders.
量子计算机允许人们探索被认为超出当前经典计算能力的计算机制。因此,经典概率算法不太可能有效地模拟通用量子计算机。部分原因是依赖现代超级计算机能力的最先进的经典模拟器很难模拟任何超过 50 个量子位的量子系统。同时,某些量子信息处理任务不需要计算通用性。在某些场景中,有可证明的好处,例如某些分布式计算任务的通信资源呈指数减少(例如 Raz 1999),以及在量子密码学中,能够无条件安全地进行通信以防止窃听。 为了在电路模型中实现量子计算,我们必须选择一组通用门。实现通用量子计算的最著名的门集之一是由 Clifford + T 门组成。 Clifford 门可以有效地进行经典模拟,但是,当您添加特殊的单量子位 T 门时,您将重新获得量子计算的全部功能。 2016 年,Bravyi 等人。引入了一个称为稳定器等级的量。它通过显着减少经典模拟量子系统所需的资源扩展来帮助减少这种指数扩展。经典模拟通用量子计算的能力虽然对于大量量子位不太可能实现,但在嘈杂的中期量子计算(NISQ)中非常重要。另一种非常自然的门集可以实现通用量子计算,它由所谓的匹配门 + 魔法状态组成。匹配门是一类特别丰富的两量子位最近邻量子门,由一组代数约束定义。例如,它们出现在图、非相互作用费米子和一维自旋链的完美匹配理论中。该项目的目标是研究匹配门稳定器等级的类似概念 - 所谓的高斯等级,并研究近似该量的计算复杂性。目前,我们对高斯等级几乎一无所知,并且与稳定器对应物不同的是,n>3 时 n 个魔法状态副本在高斯状态方面的分解是未知的。这个问题提出了一系列适合优秀博士生的独特挑战,并且需要多种技术的组合:从少量量子位的数值探索到依赖高斯态独特结构特性的基于证明的技术。计算大量幻态副本的精确高斯等级对于新兴的中小型量子计算机有许多重要的应用。首先,它将使人们能够验证大量量子位(20-300)的量子计算,这可能是一个里程碑。其次,它将为费米子线性光学的复杂性及其实现通用的能力提供独特的见解。量子计算辅以魔法状态。第三,它将允许人们设计新颖的量子纠错码以及高效的经典解码器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Acute sleep deprivation increases inflammation and aggravates heart failure after myocardial infarction.
Ionic Liquids-Polymer of Intrinsic Microporosity (PIMs) Blend Membranes for CO(2) Separation.
  • DOI:
    10.3390/membranes12121262
  • 发表时间:
    2022-12-13
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Bcl-2家族促凋亡蛋白BH3模拟肽的合成与糖尿病相关作用靶点的确认研究
  • 批准号:
    21907086
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于不确定度的复杂过程建模与模拟的模型确认方法研究及其应用
  • 批准号:
    11671413
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
复杂结构数值模拟模型确认与校正的不确定性反问题理论与方法研究
  • 批准号:
    11572115
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
爆炸与冲击问题高精度计算方法及软件的验证与确认
  • 批准号:
    11532012
  • 批准年份:
    2015
  • 资助金额:
    310.0 万元
  • 项目类别:
    重点项目
基于混合不确定性量化和高置信度数值模拟的复杂机械系统健康评估
  • 批准号:
    51275077
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Transcutaneous Phrenic Nerve Stimulation for Treating Opioid Overdose
经皮膈神经刺激治疗阿片类药物过量
  • 批准号:
    10681111
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Commercialization Readiness for Nerve Tape: a nerve repair coaptation aid
神经胶带的商业化准备:神经修复接合辅助工具
  • 批准号:
    10698977
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
FEA Simulation and Verification of Composite Pipeline End Fittings for Hydrogen and CCUS service
氢气和 CCUS 服务复合管道端部配件的 FEA 模拟和验证
  • 批准号:
    10076133
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
  • 批准号:
    10659842
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了