Engineered Platforms to Manipulate Intracellular Redox

操纵细胞内氧化还原的工程平台

基本信息

项目摘要

DESCRIPTION (provided by applicant): In redox systems research domains that traditionally belong to the physical sciences, chemistry and molecular biology are coming together to offer new synergistic opportunities for understanding and manipulating basic cellular processes that underlie complex biomedical problems (e.g., tumorigenesis). Parallel with this recognition emerges that intracellular redox status exerts influence on the normal cellular processes of DNA synthesis, selective gene expression, cell cycle progression, proliferation, differentiation, and apoptosis. However, molecular mechanisms mediating redox sensitivity are still poorly defined. Current pharmacological methods to alter intracellular redox potential require significant manipulation of culture conditions that perturb intracellular homeostasis. To overcome this problem and to answer fundamental questions concerning intracellular redox and cell growth, this proposal focuses on the creation of engineered electrochemical platforms that will enable precise manipulation of intracellular redox and novel genetic constructs that will enable real-time and extended assessment of alterations in intracellular redox without cellular disruption. Equipped with cell study platforms and biosensors for visualization (SA 1 & 2), we will address a central cell biological question of primary biomedical relevance that being the relationship between intracellular redox and density-dependent contact inhibition of cell growth (SA 3). The proposed research will thus aid public health by aiming to unravel the role of intracellular redox in uncontrolled cell growth (i.e. tumorigenesis). Specific Aim 1: Design and validate engineered electrochemical (EEC) platforms for cell studies that permit precise control of the intracellular redox environment. We will measure intracellular and intraorganellar redox state as a function of externally applied potential by monitoring the ratios of redox-active species (GSH/GSSG) and with fluorescence microscopy using markers for GSH and ROS, as well as novel gene constructs. Specific Aim 2: Develop and validate FRET biosensors that permit visual monitoring of intracellular and intraorganellar redox potentials. The envisioned genetic constructs encoding FRET-based redox sensors will be stably transfected into target cells allowing real-time monitoring of intracellular redox potentials in live cells. Incorporating organelle-specific targeting sequences will permit the monitoring of intraorganellar redox potential. Specific Aim 3: Use EEC platforms and FRET biosensors to determine how reversibly manipulating intracellular redox status affects cell growth in non-transformed and transformed human fibroblast cell lines. Nontransformed cells become increasingly oxidized concurrent with density-dependent contact inhibition. Thus, we hypothesize that mutations in redox-regulated signaling pathways that render cells unable to initiate contact inhibition may contribute to tumorigenesis. This hypothesis will be addressed with the EEC platforms (and FRET Biosensors for visualization) by reversibly manipulating the intracellular redox status of nontransformed IMR-90 human fibroblasts versus HT-1080 human fibrosarcoma cells (do not exhibit contact inhibition) to determine whether and how progressive oxidation of the intracellular environment contributes to density-dependent contact inhibition.
描述(由申请人提供):在传统上属于物理科学的氧化还原系统研究领域,化学和分子生物学正在结合在一起,为理解和操纵复杂生物医学问题(例如肿瘤发生)背后的基本细胞过程提供新的协同机会。与这一认识并行的是,细胞内氧化还原状态对 DNA 合成、选择性基因表达、细胞周期进程、增殖、分化和凋亡的正常细胞过程产生影响。然而,介导氧化还原敏感性的分子机制仍不清楚。目前改变细胞内氧化还原电位的药理学方法需要对扰乱细胞内稳态的培养条件进行大量操作。为了克服这个问题并回答有关细胞内氧化还原和细胞生长的基本问题,该提案重点关注创建工程电化学平台,该平台将能够精确操纵细胞内氧化还原和新颖的遗传结构,从而能够实时和扩展地评估细胞内的变化。细胞内氧化还原而不破坏细胞。配备细胞研究平台和可视化生物传感器(SA 1 和 2),我们将解决主要生物医学相关性的核心细胞生物学问题,即细胞内氧化还原与细胞生长的密度依赖性接触抑制之间的关系(SA 3)。因此,拟议的研究将通过旨在揭示细胞内氧化还原在不受控制的细胞生长(即肿瘤发生)中的作用来帮助公众健康。具体目标 1:设计和验证用于细胞研究的工程电化学 (EEC) 平台,允许精确控制细胞内氧化还原环境。我们将通过监测氧化还原活性物质 (GSH/GSSG) 的比率并使用 GSH 和 ROS 标记以及新的基因构建体通过荧光显微镜来测量细胞内和细胞器内氧化还原状态作为外部施加电位的函数。具体目标 2:开发并验证 FRET 生物传感器,允许视觉监测细胞内和细胞器内氧化还原电位。设想的编码基于 FRET 的氧化还原传感器的基因构建体将被稳定转染到靶细胞中,从而能够实时监测活细胞中的细胞内氧化还原电位。合并细胞器特异性靶向序列将允许监测细胞器内氧化还原电位。具体目标 3:使用 EEC 平台和 FRET 生物传感器来确定可逆地操纵细胞内氧化还原状态如何影响非转化和转化的人成纤维细胞系中的细胞生长。未转化的细胞变得越来越氧化,同时发生密度依赖性接触抑制。因此,我们假设氧化还原调节信号通路中的突变使细胞无法启动接触抑制,这可能有助于肿瘤发生。这一假设将通过 EEC 平台(和用于可视化的 FRET 生物传感器)通过可逆地操纵未转化的 IMR-90 人成纤维细胞与 HT-1080 人纤维肉瘤细胞(不表现出接触抑制)的细胞内氧化还原状态来解决,以确定是否以及如何进展。细胞内环境的氧化有助于密度依赖性接触抑制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul J. A. Kenis其他文献

マイクロ流体デバイスを用いた好冷細菌Pseudoalterommonas sp. AS-131由来グルコキナーゼ結晶のシーディング
使用微流体装置接种来自嗜冷细菌 Pseudoalteromonas sp. AS-131 的葡萄糖激酶晶体。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    真栄城正寿;湧川盛洋;Ashtamurthy Pawate;山下健一;Paul J. A. Kenis;宮崎真佐也;渡邉啓一
  • 通讯作者:
    渡邉啓一
マイクロ流路を用いたタンパク質の晶癖制御
使用微通道控制蛋白质晶体习性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    真栄城正寿;Ashtamurthy Pawate;渡邉啓一; 渡慶次学;Paul J. A. Kenis;宮崎真佐也
  • 通讯作者:
    宮崎真佐也
マイクロ流体デバイスによるタンパク質の結晶化制御技術
利用微流控装置的蛋白质结晶控制技术
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    真栄城正寿,Ashtamurthy S. Pawate;渡邉啓一;渡慶次学;Paul J. A. Kenis;宮崎真佐也
  • 通讯作者:
    宮崎真佐也
マイクロ流体デバイスを用いたタンパク質結晶のシーディング
使用微流体装置接种蛋白质晶体
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    真栄城正寿;湧川盛洋;Ashtamurthy Pawate;山下健一;渡邉啓一;Paul J. A. Kenis;宮崎真佐也
  • 通讯作者:
    宮崎真佐也
Crystallization of Glucokinase from Psychrophilic Pseudoalteromonas sp. AS-131 in Microfluidic Chip and Its Application for On-chip X-ray Diffraction
嗜冷假交替单胞菌中葡萄糖激酶的结晶。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masaya Miyazaki;Masatoshi Maeki;Ashtamurthy S. Pawate;Morihiro Wakugawa;Kenichi Yamashita;Keiichi Watanabe;Paul J. A. Kenis
  • 通讯作者:
    Paul J. A. Kenis

Paul J. A. Kenis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul J. A. Kenis', 18)}}的其他基金

Microfluidic Platform for Preparation of Biomolecule Based Nuclear Imaging Probes
用于制备基于生物分子的核成像探针的微流控平台
  • 批准号:
    8468927
  • 财政年份:
    2011
  • 资助金额:
    $ 20.88万
  • 项目类别:
MICROFLUIDIC PLATFORMS FOR LAUE CRYSTALLOGRAPHY
用于劳厄晶体学的微流控平台
  • 批准号:
    8363681
  • 财政年份:
    2011
  • 资助金额:
    $ 20.88万
  • 项目类别:
Microfluidic Platform for Preparation of Biomolecule Based Nuclear Imaging Probes
用于制备基于生物分子的核成像探针的微流控平台
  • 批准号:
    8163770
  • 财政年份:
    2011
  • 资助金额:
    $ 20.88万
  • 项目类别:
Microfluidic Platform for Preparation of Biomolecule Based Nuclear Imaging Probes
用于制备基于生物分子的核成像探针的微流控平台
  • 批准号:
    8298499
  • 财政年份:
    2011
  • 资助金额:
    $ 20.88万
  • 项目类别:
On-Chip Crystallization and In Situ X-ray Analysis of Membrane Proteins
膜蛋白的片上结晶和原位 X 射线分析
  • 批准号:
    7794997
  • 财政年份:
    2009
  • 资助金额:
    $ 20.88万
  • 项目类别:
On-Chip Crystallization and In Situ X-ray Analysis of Membrane Proteins
膜蛋白的片上结晶和原位 X 射线分析
  • 批准号:
    8054729
  • 财政年份:
    2009
  • 资助金额:
    $ 20.88万
  • 项目类别:
Engineered Platforms to Manipulate Intracellular Redox
操纵细胞内氧化还原的工程平台
  • 批准号:
    7230234
  • 财政年份:
    2006
  • 资助金额:
    $ 20.88万
  • 项目类别:
Innovative Methods for Membrane Protein Crystalliza(RMI)
膜蛋白结晶(RMI)的创新方法
  • 批准号:
    7011041
  • 财政年份:
    2005
  • 资助金额:
    $ 20.88万
  • 项目类别:
MICROFLUIDIC CHARACTERIZATION OF ENZYME KINETICS
酶动力学的微流体表征
  • 批准号:
    7181240
  • 财政年份:
    2005
  • 资助金额:
    $ 20.88万
  • 项目类别:
Innovative Methods for Membrane Protein Crystallization
膜蛋白结晶的创新方法
  • 批准号:
    7140615
  • 财政年份:
    2005
  • 资助金额:
    $ 20.88万
  • 项目类别:

相似国自然基金

干扰素抑制丁型肝炎病毒在细胞内持续复制的机制研究
  • 批准号:
    32370167
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于金刚石中NV色心的活体细胞内高灵敏与高分辨温度测量的研究
  • 批准号:
    62305241
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NASH进程中肝星状细胞内蛋白O-GlcNAc糖基化修饰的动态可视化、生物功能与糖靶向化学干预研究
  • 批准号:
    22377135
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于植物来源的天然光合系统调控细胞内Ca2+稳态并改善退变软骨细胞线粒体功能的机制研究
  • 批准号:
    82372454
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
巨噬细胞内不同吞噬表型的格特隐球菌致病性差异及分子机制研究
  • 批准号:
    82370005
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Transfer Hydrogenation Small-Molecule Intracellular Metal Catalysts (SIMCats) and their Application Toward Toxic Aldehyde Remediation
转移氢化小分子胞内金属催化剂(SIMCats)的开发及其在有毒醛修复中的应用
  • 批准号:
    10570217
  • 财政年份:
    2020
  • 资助金额:
    $ 20.88万
  • 项目类别:
Development of Transfer Hydrogenation Small-Molecule Intracellular Metal Catalysts (SIMCats) and their Application Toward Toxic Aldehyde Remediation
转移氢化小分子胞内金属催化剂(SIMCats)的开发及其在有毒醛修复中的应用
  • 批准号:
    10350641
  • 财政年份:
    2020
  • 资助金额:
    $ 20.88万
  • 项目类别:
Metalloendocrinology: Mapping Bioinorganic Chemistry in the Extracellular Space
金属内分泌学:绘制细胞外空间的生物无机化学图谱
  • 批准号:
    10192761
  • 财政年份:
    2019
  • 资助金额:
    $ 20.88万
  • 项目类别:
Metalloendocrinology: Mapping Bioinorganic Chemistry in the Extracellular Space
金属内分泌学:绘制细胞外空间的生物无机化学图谱
  • 批准号:
    10413201
  • 财政年份:
    2019
  • 资助金额:
    $ 20.88万
  • 项目类别:
Metalloendocrinology: Mapping Bioinorganic Chemistry in the Extracellular Space
金属内分泌学:绘制细胞外空间的生物无机化学图谱
  • 批准号:
    10845788
  • 财政年份:
    2019
  • 资助金额:
    $ 20.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了